• Title/Summary/Keyword: structural hysteresis

Search Result 246, Processing Time 0.021 seconds

Hysteresis Models of Reinforced Concrete Structures (철근콘크리트 구조물의 비선형 이력모델)

  • 장극관
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.13-23
    • /
    • 1992
  • 본 소고는 철근콘크리트 구조물에 관련된 현재의 실험적, 해석적 연구의 수준을 정리 요약한 것으로서 이력모델에 따른 철근콘크리트 구조물의 응답과 모델의 선택시에 빈번히 만나게 되는 문제점 및 해석시 응답모델의 선택 등에 대해 기술하였다. 실제적으로 R/C 구조물의 비선형 이력모델은 그 범위가 매우 넓고 다양하기 때문에 일률적으로 설명하기가 매우 어려운 점이 있다. 여기서는 철근콘크리트 구조물의 이력모델의 종류 및 범위에 대하여 소개하고 그 특성 및 형성과정에 대해 간략하게 설명하기로 한다.

  • PDF

Nonlinear Analysis Model of RC Shear Wall Building (철근 콘크리트 벽식 구조물의 비선형 해석모델)

  • 정일영;이영욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.141-148
    • /
    • 1993
  • In this paper, TVLEM is selected for the shear wall model which was proposed by Kabeyasawa and the characteristics of spring models composing TVLEM was studied. In axial stiffness spring model, the horizontal displacements when Kabeyasawa model and simple axial stiffness hysteresis model were used, were closely similar. When the large shear-displacement was occured, stiffness degrading model was more adquate to the shear wall modelling than OOHM. Also for the purpose of modelling the horizontally continuous wall, the seperational method for TVLEM was used. The results of nonlinear analysis by this method were closely similar to experimental results .

  • PDF

Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations (교량거동에 미치는 기초의 회전 및 병진운동의 영향)

  • 김상효;마호성;함형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF

Magnetic Hysteresis Monitoring according to the Change of Tensile Force and Steel Class of PS Tendons (PS 텐던 강종별 긴장력 변화에 따른 자기이력 모니터링)

  • Kim, Junkyeong;Park, Seunghee;Lee, Hwanwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • This paper introduces a magnetic hysteresis monitoring result to apply an EM sensing technique for estimating tensile force of PSC girder to various class of PS tendon. The tensile force of PS tendon is a very important factor in the performance evaluation of PSC bridges. However, in this time, the tensile force was just measured only during construction and it does not monitored after construction. To measure the tensile force of PS tendons, the EM sensing based NDT method was developed but the proposed method cannot be applied to various class of PS tendons. Thus this study performed the magnetic hysteresis measurement according to the tensile force for class B, C and D PS tendons through experimental study. The specific tensile forces(50, 100, 150, 180kN) were induced to the each specimens and the magnetic hysteresis curve was measured at each point. The permeability of specimens were gradually decreased according to increase of tensile force. Especially, the slopes of permeability variation of class B and C were similar while that of class D was different.

Nonlinear Analysis Model Considering Failure Mode of Unreinforced Masonry Wall (파괴모드를 고려한 비보강 조적벽체의 비선형 해석모델)

  • Baek, Eun-Lim;Kim, Jung-Hyun;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • The final purpose of this study is to evaluate the seismic performance of unreinforced masonry (URM) building more accurately. For that, shear strength and hysteresis model considering failure mode of the URM wall were discussed. The shear strength of URM wall without openings could be calculated by determining on the minimum value between the rocking strength suggested by domestic research and the sliding strength suggested by FEMA. The wall having openings could be predicted properly by the FEMA method. And the nonlinear hysteresis models for flexural and shear behaviors considering failure mode were proposed. As the result of the nonlinear cyclic analysis that carried out using suggested models, these analysis models were proper to represent the seismic behavior of URM walls.

A Guide to Select Muslin for Fitting (재킷 소재에 따른 Fitting용 머슬린 선정에 관한 연구)

  • 조진숙;서지연
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.3
    • /
    • pp.650-661
    • /
    • 2001
  • The purpose of this study is to suggest a guidance to select proper muslin through investigating fabric characteristics. The structural and physical properties of muslin and top fabric samples were tested by KES-FB system and other testers. And in order to examine the relation between fabric characteristics and the shape of garments, wearing tests were done with jackets made of those samples. As a result, bending rigidity(B), bending hysteresis(2HB), shear stiffness(G), shear hysteresis at=0.5(2HG), shear hysteresis at=5(2HG5), stiffness, cloth count/5cm, weight, thickness were extracted as the key factors affecting the appearance of garments. To have similar appearance, all of these should be counted. After standardizing, we calculate the variance between top cloth and muslin. And from this we could get the range that the proper muslin should be included. The ranges were as follows: Bending rigidity(B): within 0.024g.$\textrm{cm}^2$/cm(0.3$\sigma$); Shear stiffness(G): within 2.21g/cm.degree(1.3$\sigma$) Weight: within 9.33mg/$\textrm{cm}^2$(18$\sigma$); Thickness: within 0.20mm(1.8$\sigma$)

  • PDF

A Study on Forced Vibration Tests on a Structure with Stud Type of Vibration Control Damper (스터드형 진동제어 강재댐퍼가 장착된 3층 강구조 골조의 강제진동실험에 관한 연구)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.115-121
    • /
    • 2006
  • In recent years vibration control damper made of low yield point steel is expected to play an important role in controlling structural vibration induced earthquake and wind. But their dynamic characteristics and energy dissipation effects on the whole structure model are not clarified. In this paper, firstly, we presents the results of cyclic tests on low yield steel dampers. Secondly, forced vibration tests on existence three stories steel structure model with low yield point steel dampers are presented. Lastly, it is estimated energy amount which is dissipated through the hysteresis dampers by using two types of analytical models, hysteresis model and equivalent linear model.

  • PDF

Moment-curvature hysteresis model of angle steel frame confined concrete columns

  • Rong, Chong;Tian, Wenkai;Shi, Qingxuan;Wang, Bin;Shah, Abid Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The angle steel frame confined concrete columns (ASFCs) are an emerging form of hybrid columns, which comprise an inner angle steel frame and a concrete column. The inner angle steel frame can provide axial bearing capacity and well confining effect for composite columns. This paper presents the experimental and theoretical studies on the seismic behaviour of ASFCs. The experimental study of the 6 test specimens is presented, based on the previous study of the authors. The theoretical study includes two parts. One part establishes the section analysis model, and it uses to analyze section axial force-moment-curvature. Another part establishes the section moment-curvature hysteresis model. The test and analysis results show that the axial compression ratio and the assembling of steel slabs influence the local buckling of the angle steel. The three factors (axial compression ratio, content of angle steel and confining effect) have important effects on the seismic behaviour of ASFCs. And the theoretical model can provide reasonably accurate predictions and apply in section analysis of ASFCs.

Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System (고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.371-382
    • /
    • 2012
  • Existing shear wall system may cause ductility fallen to the structure which it is on because relatively weak concrete core would easy to be damaged. In this study, steel hysteresis dampers whose stiffness is higher than existing coupling beam and whose strength is easy to change depending on design load was used in coupling beam. The steel hysteresis damper was proposed for the shape connected in double in series, from this, several static test were conducted to verify structural performance of the damper. FEM analysis was also performed, then design equation were suggested.

Structural and Electrical Properties of an Electrolyte-insulator-metal Device with Variations in the Surface Area of the Anodic Aluminum Oxide Template for pH Sensors

  • Kim, Yong-Jun;Lee, Sung-Gap;Yeo, Jin-Ho;Jo, Ye-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2364-2367
    • /
    • 2015
  • In this study, we fabricated an electrolyte-insulator-metal (EIM) device incorporating a high-k Al2O3 sensing membrane using a porous anodic aluminum oxide (AAO) through a two-step anodizing process for pH detection. The structural properties were observed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction patterns (XRD). Electrochemical measurements taken consisted of capacitance-voltage (C-V), hysteresis voltage and drift rates. The average pore diameter and depth of the AAO membrane with a pore-widening time of 20 min were 123nm and 273.5nm, respectively. At a pore-widening time of 20 min, the EIM device using anodic aluminum oxide exhibited a high sensitivity (56mV/pH), hysteresis voltage (6.2mV) and drift rate (0.25mV/pH).