• Title/Summary/Keyword: structural fragility

Search Result 273, Processing Time 0.02 seconds

Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

  • Almomani, Belal;Jang, Dongchan;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.411-425
    • /
    • 2017
  • Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose-risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

Efficient Analysis for the Hybrid Structural Systems with Upper Shear-Wall and Lower Frames (상부전단벽과 하부골조로 구성된 복합구조 시스템의 효율적 해석)

  • 장극관;안태상
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.441-451
    • /
    • 2002
  • Recently, Increasing residential-commercial buildings are composed of upper wall and lower frame type. As structural fragility, a large numbers of researchers have tried to develope the efficient analysis methods. But these studies were too theoretical and were not considered the lateral load which was required in analysing the transfer level in addition to being used nonlinear program which was difficult to use for practical design. thus, results of these studies we not appropriate to apply practical design, therefore, in this paper, the procedure of the current design practice were compared with that of used FEM method and presented new modeling method. in particular, an efficient analytical model which can be used in practical design of residential-commercial buildings for vortical and seismic loads was proposed and the usefulness of proposed model was verified.

Preliminary Estimation of Earthquake Losses Based on HAZUS in a Coastal Facility Area with Blocks Applying Site Classification (블록별 부지분류 적용 해안시설 영역에서의 HAZUS 기반 지진피해 추정)

  • Sun, Chang-Guk;Chun, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.10-27
    • /
    • 2014
  • HAZUS-MH is a GIS-based computer program that estimates potential losses from multi-hazard phenomena: earthquakes, floods and hurricanes. With respect to seismic disaster, characteristics of a hypothetical or actual earthquake are entered into HAZUS. Then HAZUS estimates the intensity of ground shaking and calculates the correspondent losses. In this study, HAZUS was used as a part of the preparations of the future seismic events at a coastal plant facility area. To reliably characterize the target facility area, many geotechnical characteristics data were synthesized from the existing site investigation reports. And the buildings and facilities were sorted by analyzing their material and structural characteristics. In particular, the study area was divided into 17 blocks taking into account the situation of both land development and facility distribution. The ground conditions of blocks were categorized according to the site classification scheme for earthquake-resistant design. Moreover, seismic fragility curves of a main facilities were derived based on the numerical modeling and were incorporated into the database in HAZUS. The results estimated in the study area using HAZUS showed various seismic damage and loss potentials depending on site conditions and structural categories. This case study verified the usefulness of the HAZUS for estimating earthquake losses in coastal facility areas.

Influence of Incidence Direction of Seismic Wave on the Probabilistic Seismic Fragility Assessment of Bridges (교량의 확률론적 지진취약도에 대한 지진파의 입사방향성의 영향)

  • Sina Kong;Yeeun Kim;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.151-162
    • /
    • 2024
  • As the incidence direction of ground motion (or seismic wave) changes, the seismic response of the structure will also change according to that direction. In order to analyze the effect of the seismic response of the example bridge according to the direction of incidence of ground motion, the acceleration response spectra (Sa-T1) corresponding to the 1-second period obtained for various angles of incidence were obtained. Using Sa-T1, 40 sets of orthogonal pairs of horizontal component seismic waves corresponding to 5 types of percentiles were generated. Seismic vulnerability analysis of the bridge piers was performed by obtaining the seismic response of an example bridge according to the direction of incidence of ground motion. By analyzing the seismic vulnerability analysis of seismic waves corresponding to five types of percentiles, it was found that the median value of the seismic vulnerability curve differs by about 1.2 to 2.6 times depending on the incident direction of the seismic wave. In other words, depending on the incidence direction of seismic waves, the degree of damage to the bridge structure can vary by about 1.2 to 2.6 times.

Feasibility Study of Seismic Probabilistic Risk Assessment for Multi-unit NPP with Seismic Failure Correlation (다수기의 확률론적 지진안전성 평가를 위한 지진손상 상관계수의 적용)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.319-325
    • /
    • 2021
  • The 2011 East Japan Earthquake caused accidents at a number of nuclear power plants in Fukushima, highlighting the need for a study on the seismic safety of multiple NPP (Nuclear Power Plant) units. In the case of nuclear power plants built on a site that shows a similar seismic response, there is at least a correlation between the seismic damage of structures, systems, and components (SSCs) of nuclear power plants. In this study, a probabilistic seismic safety assessment was performed for the loss of essential power events of twin units. To derive an appropriate seismic damage correlation coefficient, a probabilistic seismic response analysis was performed. Using the external event mensuration system program, we analyzed the seismic fragility and seismic risk by composing a failure tree of multiple loss of essential power events. Additionally, a comparative analysis was performed considering the seismic damage correlation between SSCs as completely independent and completely dependent.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.

Improved Evaluation for the Seismic Capacity of Concrete Gravity Dams (콘크리트 중력식 댐의 향상된 내진성능 평가방법)

  • Kim, Yon-Gon;Kwon, Hyek-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.1-14
    • /
    • 2004
  • The objective of this study is firstly to frame up the seismic safety of concrete gravity dams. It is necessary to analyze seismic response and evaluate seismic performance of concrete gravity dams during earthquake. In this study, seismic damage and dynamic analysis of concrete gravity dams using structural analysis package such as SAP2000 and MIDAS were performed. Additional dynamic water pressure due to earthquake considered as additional mass for numerical seismic analysis. According detailed analysis, the vibration through the dam structure (transverse to water flow) seems to be very critical depending on the shape of the dam. For more precise evaluation of seismic fragility of concrete gravity dams, further research is still needed.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Seismic vulnerability assessment criteria for RC ordinary highway bridges in Turkey

  • Avsar, O.;Yakut, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.127-145
    • /
    • 2012
  • One of the most important and challenging steps in seismic vulnerability and performance assessment of highway bridges is the determination of the bridge component damage parameters and their corresponding limit states. These parameters are very essential for defining bridge damage state as well as determining the performance of highway bridges under a seismic event. Therefore, realistic damage limit states are required in the development of reliable fragility curves, which are employed in the seismic risk assessment packages for mitigation purposes. In this article, qualitative damage assessment criteria for ordinary highway bridges are taken into account considering the critical bridge components in terms of proper engineering demand parameters (EDPs). Seismic damage of bridges is strongly related to the deformation of bridge components as well as member internal forces imposed due to seismic actions. A simple approach is proposed for determining the acceptance criteria and damage limit states for use in seismic performance and vulnerability assessment of ordinary highway bridges in Turkey constructed after the 1990s. Physical damage of bridge components is represented by three damage limit states: serviceability, damage control, and collapse prevention. Inelastic deformation and shear force demand of the bent components (column and cap beam), and superstructure displacement are the most common causes for the seismic damage of the highway bridges. Each damage limit state is quantified with respect to the EDPs: i.e. curvature and shear force demand of RC bent components and superstructure relative displacement.