• Title/Summary/Keyword: structural fragility

Search Result 273, Processing Time 0.024 seconds

Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge

  • Bayat, M.;Kia, M.;Soltangharaei, V.;Ahmadi, H.R.;Ziehl, P.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • In the present study, by employing fragility analysis, the seismic vulnerability of a concrete girder bridge, one of the most common existing structural bridge systems, has been performed. To this end, drift demand model as a fundamental ingredient of any probabilistic decision-making analyses is initially developed in terms of the two most common intensity measures, i.e., PGA and Sa (T1). Developing a probabilistic demand model requires a reliable database that is established in this paper by performing incremental dynamic analysis (IDA) under a set of 20 ground motion records. Next, by employing Bayesian statistical inference drift demand models are developed based on pre-collapse data obtained from IDA. Then, the accuracy and reasonability of the developed models are investigated by plotting diagnosis graphs. This graphical analysis demonstrates probabilistic demand model developed in terms of PGA is more reliable. Afterward, fragility curves according to PGA based-demand model are developed.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

Seismic fragility analysis of conventional and viscoelastically damped moment resisting frames

  • Guneyisi, Esra Mete;Sahin, Nazli Deniz
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.295-315
    • /
    • 2014
  • This paper presents the results of an analytical study on seismic reliability of viscoelastically damped frame systems in comparison with that of conventional moment resisting frame systems. In order to exhibit the reliability of the frame systems with viscoelastic dampers, seismic reliability analyses were carried out for steel framed buildings, 5 and 12 storeys in height, designed as: (a) Case 1: Conventional moment resisting frame, (b) Case 2: Frame with viscoelastic dampers providing supplemental effective damping ratio of 10%, and (c) Case 3: Frame with viscoelastic dampers providing supplemental effective damping ratio of 20%. Nonlinear time history analyses were utilized to develop seismic fragility curves whilst monitoring various performance objectives. To obtain robust estimators of the seismic reliability, a database including 15 natural earthquake ground motion records with markedly different characteristics was employed in the fragility analysis. The results indicate that depending upon the supplemental effective damping ratio, frames designed with viscoelastic dampers have considerably lower annual probability of exceedance of performance limit states for structural components, showing up to a five-fold reduction in comparison to conventionally designed moment resisting frame system.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Seismic Fragility of Low-rise Piloti Buildings Designed According to KDS 41 17 00 (KDS 41 17 00에 따라 설계된 저층 필로티 건물의 지진 취약도)

  • Joo, Changhyeok;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-58
    • /
    • 2022
  • The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.

Reliability-based approach for fragility assessment of bridges under floods

  • Raj Kamal Arora;Swagata Banerjee
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.311-322
    • /
    • 2023
  • Riverine flood is one of the critical natural threats to river-crossing bridges. As floods are the most-occurred natural hazard worldwide, survival probability of bridges due to floods must be assessed in a speedy but precise manner. In this regard, the paper presents a reliability-based approach for a rapid assessment of failure probability of vulnerable bridge components under floods. This robust method is generic in nature and can be applied to both concrete and steel girder bridges. The developed methodology essentially utilizes limit state performance functions, expressed in terms of capacity and flood demand, for probable failure modes of various vulnerable components of bridges. Advanced First Order Reliability Method (AFORM), Monte Carlo Simulation (MCS), and Latin Hypercube Simulation (LHS) techniques are applied for the purpose of reliability assessment and developing flood fragility curves of bridges in which flow velocity and water height are taken as flood intensity measures. Upon validating the proposed method, it is applied to a case study bridge that experiences the flood scenario of a river in Gujarat, India. Research outcome portrays how effectively and efficiently the proposed reliability-based method can be applied for a quick assessment of flood vulnerability of bridges in any flood-prone region of interest.

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

Influence Analysis of Seismic Risk due to the Failure Correlation in Seismic Probabilistic Safety Assessment (다중기기 손상 상관성에 의한 지진리스크 영향 분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • The seismic safety of nuclear power plants has always been emphasized by the effects of accidents. In general, the seismic safety evaluation of nuclear power plants carries out a seismic probabilistic safety assessment. The current probabilistic safety assessment assumes that damage to the structure, system, and components (SSCs) occurs independently to each other or perfect dependently to each other. In case of earthquake events, the failure event occurs with the correlation due to the correlation between the seismic response of the SSCs and the seismic performance of the SSCs. In this study, the EEMS (External Event Mensuration System) code is developed which can perform the seismic probabilistic safety assessment considering correlation. The developed code is verified by comparing with the multiplier n, which is for calculating the joint probability of failure, which is proposed by Mankamo. It is analyzed the changes in seismic fragility curves and seismic risks with correlation. As a result, it was confirmed that the seismic fragility curves and seismic risk change according to the failure correlation coefficient. This means that it is important to select an appropriate failure correlation coefficient in order to perform a seismic probabilistic safety assessment. And also, it was confirmed that carrying out the seismic probabilistic safety assessment in consideration of the seismic correlation provides more realistic results, rather than providing conservative or non-conservative results comparing with that damage to the SSCs occurs independently.