DOI QR코드

DOI QR Code

Reliability-based approach for fragility assessment of bridges under floods

  • Raj Kamal Arora (Department of Civil Engineering, Indian Institute of Technology Bombay) ;
  • Swagata Banerjee (Department of Civil Engineering, Indian Institute of Technology Bombay)
  • Received : 2023.03.04
  • Accepted : 2023.10.23
  • Published : 2023.11.25

Abstract

Riverine flood is one of the critical natural threats to river-crossing bridges. As floods are the most-occurred natural hazard worldwide, survival probability of bridges due to floods must be assessed in a speedy but precise manner. In this regard, the paper presents a reliability-based approach for a rapid assessment of failure probability of vulnerable bridge components under floods. This robust method is generic in nature and can be applied to both concrete and steel girder bridges. The developed methodology essentially utilizes limit state performance functions, expressed in terms of capacity and flood demand, for probable failure modes of various vulnerable components of bridges. Advanced First Order Reliability Method (AFORM), Monte Carlo Simulation (MCS), and Latin Hypercube Simulation (LHS) techniques are applied for the purpose of reliability assessment and developing flood fragility curves of bridges in which flow velocity and water height are taken as flood intensity measures. Upon validating the proposed method, it is applied to a case study bridge that experiences the flood scenario of a river in Gujarat, India. Research outcome portrays how effectively and efficiently the proposed reliability-based method can be applied for a quick assessment of flood vulnerability of bridges in any flood-prone region of interest.

Keywords

References

  1. AASHTO LRFD (2012), Bridge Specification, 6th Edition, AASHTO, Washington, DC.
  2. Ahamed, T., Duan, J.G. and Jo, H. (2020), "Flood-fragility analysis of instream bridges-consideration of flow hydraulics, geotechnical uncertainties, and variable scour depth", Struct. Infrastr. Eng., 17(11), 1494-1507. https://doi.org/10.1080/15732479.2020.1815226.
  3. Ahamed, T., Shim, J., Jo, H. and Duan, J.G. (2018), "Flood fragility analysis of instream bridges", Sensor. Smart Struct. Technol. Civil Mech. Aerosp. Syst., 10598, 542-547. https://doi.org/10.1117/12.2296782.
  4. Anisha, A., Jacob, A., Davis, R. and Mangalathu, S. (2022), "Fragility functions for highway RC bridge under various flood scenarios", Eng. Struct., 260, 114244. https://doi.org/10.1016/j.engstruct.2022.114244.
  5. Argyroudis, S.A. and Mitoulis, S.A. (2021), "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes", Reliab. Eng. Syst. Saf., 210, 107564. https://doi.org/10.1016/j.ress.2021.107564.
  6. Arneson, L.A.M., Zevenbergen, L.W., Lagasse, P.F and Clopper, P.E. (2001), "Evaluating scour at bridges", Hydraulic Engineering Circular (HEC) No. 18, Publication No. FHWAHIF-12-003, Federal Highway Administration, Department of Transportation, Washington, DC, U.S.
  7. AS5100.7 (2017), Bridge Design-Part 2: Design l Loads, Standards Australia Limited, Sydney.
  8. Banerjee, S. and Shinozuka, M. (2008), "Experimental verification of bridge seismic damage states quantified by calibrating analytical models with empirical field data", Earthq. Eng. Eng. Vib., 7, 383-393. https://doi.org/10.1007/s11803-008-1010-9.
  9. Bonthron, L.A., Beck, C., Lund, A., Zhang, X., Cao, Y., Dyke, S.J., Ramirez, J., Mavroeidis, G.P., Baah, P. and Hunter, J. (2021), "Database enabled rapid seismic vulnerability assessment of bridges", Transp. Res. Record, 2675(12), 1106-1120. https://doi.org/10.1177/03611981211032
  10. CCKP (2021), The World Bank Group. https://climateknowledgeportal.worldbank.org/
  11. CCS (2022), Social Protection Research Centre. Climate Crisis, Hassanabad Bridge Collapse Hunza. https://www.sprc.org.pk/climate-crisis-hassanabad-bridgecollapse-hunza-pakistan-2022/
  12. Cook, W., Barr, P.J and Halling, M.W. (2015), "Bridge failure rate", J. Perform. Constr. Facil., 29, 1-8. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000571.
  13. CWC (2019), Water Year Book, 2017-18, Gandhinagar (Gujarat).
  14. Dey, A. and Sil, A. (2021), "Advanced corrosion-rate model for comprehensive seismic fragility assessment of chloride affected RC bridges located in the coastal region of India", Struct., 34, 947-963. https://doi.org/10.1016/j.istruc.2021.08.045.
  15. Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H. and Kanae, S. (2013), "Global flood risk under climate change", Nat. Climate Change 3(9), 816. https://doi.org/10.1038/nclimate1911.
  16. Hung, C.C. and Yau, W.G. (2017), "Vulnerability evaluation of scoured bridges under floods", Eng. Struct., 132, 288-299. https://doi.org/10.1016/j.engstruct.2016.11.044.
  17. Kerenyi, K., Sofu, T. and Guo, J. (2009), "Hydrodynamic forces on inundated bridge decks", Report No. FHWA-HRT-09-028, 48.
  18. Khandel, O and Soliman, M. (2019), "Integrated framework for quantifying the effect of climate change on the risk of bridge failure due to floods and flood-induced scour", J. Bridge Eng., 24, 04019090. https://doi.org/10.1061/(asce)be.1943-5592.0001473.
  19. Kim, H., Sim, S.H., Lee, J., Lee Y.J and Kim, J.M. (2017), "Flood fragility analysis for bridges with multiple failure modes", Adv. Mech. Eng., 9(3), 1687814017696415. https://doi.org/10.1177/1687814017696415.
  20. Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., ... & Sherstyukov, B. (2014), "Flood risk and climate change: Global and regional perspectives", Hydrolog. Sci. J., 59(1), 1-28. http://doi.org/10.1080/02626667.2013.857411
  21. Lebbe, M.F.K., Lokuge, W., Setunge, S. and Zhang, K. (2014), "Failure mechanism of bridge infrastructure in an extreme flood event", Proceedings of the First Conference of Infrastructure Failures and Consequences, Melbourne, July.
  22. Lee, J., Lee Y.J., Kim, H. and Sim, S.H. (2016a), "Flood fragility analysis for multiple failure modes of bridges by finite element reliability analysis", The 2016 Structures Congress, Korea, August.
  23. Lee, J., Lee, Y.J., Kim, H., Sim, S.H. and Kim, J.M. (2016b), "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges", Smart Struct. Syst., 17, 149-165. https://doi.org/10.12989/sss.2016.17.1.149.
  24. Loli, M., Kefalas, G., Dafis, S., Mitoulis, S.A. and Schmidt, F. (2022a), "Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data", Sci. Total Environ., 850, 157976. https://doi.org/10.1016/j.scitotenv.2022.157976.
  25. Loli, M., Mitoulis, S.A., Tsatsis, A., Manousakis, J., Kourkoulis, R. and Zekkos, D. (2022b), "Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations", Sci. Total Environ., 822, 153661. http://doi.org/10.1016/j.scitotenv.2022.153661
  26. Mitoulis, S.A., Argyroudis, S.A., Loli, M. and Imam, B. (2021), "Restoration models for quantifying flood resilience of bridges", Eng. Struct., 238, 112180. https://doi.org/10.1016/j.engstruct.2021.112180.
  27. Mondoro, A. and Frangopol, D.M. (2018), "Risk-based cost-benefit analysis for the retrofit of bridges exposed to extreme hydrologic events considering multiple failure modes", Eng. Struct., 159, 310-319. https://doi.org/10.1016/j.engstruct.2017.12.029.
  28. Nasim, M., Setunge, S., Zhou, S. and Mohseni, H. (2019), "An investigation of water-flow pressure distribution on bridge piers under flood loading", Struct. Infrastr. Eng., 15, 219-229. https://doi.org/10.1080/15732479.2018.1545792.
  29. Nasr, A., Kjellstrom, E., Bjornsson, I., Honfi, D., Ivanov, O.L. and Johansson, J. (2020), "Bridges in a changing climate: a study of the potential impacts of climate change on bridges and their possible adaptations", Struct. Infrastr. Eng., 16, 738-349. https://doi.org/10.1080/15732479.2019.1670215.
  30. Nowak, A. and Collins, K. (2000), Reliability of Structures, McGraw-Hill, Boston, USA.
  31. Pregnolato, M., Winter, A.O., Mascarenas, D., Sen, A.D., Bates, P. and Motley, M.R. (2022), "Assessing flooding impact to riverine bridges: An integrated analysis", Nat. Hazard. Earth Syst Sci., 22, 1559-1576. https://doi.org/10.5194/nhess-22-1559-2022.
  32. Ritchie, H. and Roser, M. (2014), Natural Disasters, Our World in Data.
  33. Shan, H., Xie, Z., Bojanowski, C., Suaznabar, O., Lottes, S., Shen, J. and Kerenyi, K. (2012), "Submerged flow bridge scour under clear water conditions", Federal Highway Administration No. FHWA-HRT-12-034.
  34. SP-16 (1980), Design Aids for Reinforced Concrete to IS 456:1978, New Delhi.
  35. Wardhana, K. and Hadipriono, F.C. (2003), "Analysis of recent bridge failures in the United States", J. Perform. Constr. Facil., 17, 144-150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144).
  36. Xiong, W., Cai, C.S., Zhang, R., Shi, H. and Xu, C. (2023), "Review of hydraulic bridge failures: Historical statistic analysis, failure modes, and prediction methods", J. Bridge Eng., 28(4), 03123001. https://doi.org/10.1061/jbenf2.beeng5763.
  37. Yilmaz, T. and Banerjee, S. (2018), "Impact spectrum of flood hazard on seismic vulnerability of bridges", Struct. Eng. Mech., 66(4), 515-529. https://doi.org/10.12989/sem.2018.66.4.515.