• Title/Summary/Keyword: failure modes

Search Result 1,321, Processing Time 0.032 seconds

Reliability Analysis of Multiple Failure Modes of Rubble-Mound Breakwaters (경사제의 다중 파괴모드에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • A reliability analysis has been performed to investigate the systematic stability of multi-failure modes of rubble-mound breakwaters. The reliability functions of four different failure modes are established straightforwardly. AFDA(Approximate Full Distribution Approcah) reliability models for each failure modes are directly developed and satisfactorily calibrated through the comparison with CIAD's results. In the reliability analysis of single failure mode, the probabilities of failure are calculated and the influence coefficients of random variables in the failure modes are properly evaluated. Meanwhile, three different models such as uni-modal bounds, bimodal bounds, and PNET are applied to evaluate the probabilities of failure of multi-failure modes for rubble-mound breakwaters. It may be found that uni-modal bounds tend to overestimate the probability of failure of multi-failure modes. Therefore, for the systematic reliability analysis of multi-failure modes, it is recommended to use bi-modal bounds or PNET which consider the correlation between the failure modes for rubble-mound breakwaters. By introducing the reliability analysis of multi-failure modes, it could be possible to find out the additional probabilities of failure occurred by the multi-failure modes of a multi-component system such as rubble-mound breakwaters.

Failure Modes and Effects Analysis for Electric Power Installations of D University (D대학 수변전설비의 고장모드 영향 분석)

  • Park, Young Ho;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.7-15
    • /
    • 2016
  • The purpose of this paper is to carry out Failure Modes and Effects Analysis (FMEA) and use criticality in order to determine risk priority number of the components of electric power installations in Engineering college building of D university. In risk priority number, GROUP A had 7 failure modes; more specifically, Transfomer had 4 modes, Filter(C)(1 mode), LA(1 mode), and CB(MCCB)(1 mode), and thus 4 components had failure modes. In terms of criticality, high-grade group a total of 16 failure modes, and 7 components-LA(1 mode), CB(MCCB)(1 mode), MOF(2 modes), PT(1 mode), Transformer(7 modes), Cable(3 modes), and Filter(C)(1 mode)-had failure modes. Comparison of risk priority number and criticality was made. The components which had high risk priority number and high criticality were Transformer, Filter(C), LA, and CB(MCCB). The components which had high criticality were MOF and cable. In particular, Transformer(RPN: 4 modes, Criticality: 7 modes) was chosen as an intensive management component.

Reliability Analysis of Mechanical Component with Multiple Failure Modes (다수의 고장모드를 가지는 기계부품의 신뢰성 분석)

  • Chang, Mu Seong;Choi, Byung Oh;Kang, Bo Sik;Park, Jong Won;Lee, Choong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1169-1174
    • /
    • 2013
  • Most products are indeed governed by multiple failure modes. However, there are few cases in which reliability analysis applies to only one failure mode at a time. Furthermore, reliability data do not include information about failure modes, or the reliability analysis is performed using a representative failure mode. The Weibull shape parameter for failure modes is more important than one for products in the reliability qualification test. This paper presents reliability analysis methods for a mechanical component with multiple failure modes. These methods include the competing failure modes (CFM) method and the mixed Weibull method. Pneumatic cylinder test data with three failure modes are presented to estimate the shape parameter for each separate failure mode. In addition, reliability measures (B10 life, characteristic life) of the pneumatic cylinder considering three failure modes were compared with those assuming a single failure mode.

Classification method for failure modes of RC columns based on key characteristic parameters

  • Yu, Bo;Yu, Zecheng;Li, Qiming;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System (원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰)

  • Han, Seok-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

Hydraulic stability analysis at the head of rubble mound breakwater by the real process method (연속재현기법을 이용한 이안제 제두부의 수리학적 안정성 분석)

  • Kim Hong-Jin;Ryu Cheong-Ro;Kang Yoon-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.120-126
    • /
    • 2004
  • The failure modes analysis by the real process method at the head section of rubble mound breakwaters is more important than other failure modes analysis. because this initial failure modes and failure process will lead to the destruction of the structure. The three-dimensional failure modes are discussed using the experimental data with directional waves considering the failure modes. It was processed step by step failure around the head of rubble mound breakwaters. The spacial characteristics of failure mode by real process analysis was well descript at the rubble mound structures.

  • PDF

Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.520-530
    • /
    • 2007
  • Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known.

The System Reliability Analysis of Web Frame by Plastic Strength Analysis (소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석)

  • Y.S. Yang;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 1991
  • Plastic strength analysis using plastic failure mode as a limit state is adopted instead of a conventional elastic structural analysis to predict the ultimate strength of Web frame idealized by a plane frame. Linear programming arid Compact procedure are developed for determining the collapse load factor. It is found that the final results are good agreement with the results of Elasto-plastic analysis. Besides, the redundant structures like Web frame is known to have multiple failure modes. Web frame may collapse under any of the possible failure modes. Thus, the identification of these possible failure modes is necessary and very important in the reliability analysis of Web frame. In order to deal with multiple failure modes, automatic generation method of all failure modes and basic failure modes is used for selecting the dominant failure modes. The probability of failure pastic collapse of Web frame is calculated using these dominant failure modes. The safety of Web frame is asscssed and compared by performing the deterministic and probabilistic analysis.

  • PDF

System Reliability Analysis of Rack Storage Facilities (물류보관 랙선반시설물의 시스템신뢰성 해석)

  • Ok, Seung-Yong;Kim, Dong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.116-122
    • /
    • 2014
  • This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.