• Title/Summary/Keyword: structural fiber

Search Result 2,163, Processing Time 0.023 seconds

Spalling Properties of High-Performance Concrete with the Kinds of Admixture and Polypropylene Fiber Contents (혼화재 종류 및 폴리프로필렌 섬유의 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성)

  • Han, Cheon-Goo;Yang, Seong-Hwan;Lee, Byung-Yul;Hwang, Yin-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.85-92
    • /
    • 2000
  • Recently. there has been steadily applied in high-performance concrete using powder type admixture in construction field. It has been reported that high-performance concrete is likely to cause the spalling by fire more seriously due to the dense microstructure. In this paper, spalling properties of high-performance concrete with the kinds of admixture and polypropylene(PP) fiber contents are presented. According to the experimental results concrete contained no PP fiber take place in the form of the surface spalling, regardless of admixture. Concrete contained more than 0.05% of PP fiber and admixture do not take place the spalling, however the concrete using silica fume do spalling. Concrete using blast furnace slag have good performance in spalling resistance. It is found that residual compressive strength has 60~70% of its original strength when spalling do not occur. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

Mechanical Property of Fiber Reinforced Concrete according to the Change of Curing Method (양생방법 변화에 따른 섬유보강콘크리트의 역학적 특성)

  • Kim, Chun-Ho;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2016
  • When assessing crack initiation of fiber reinforced concrete, usually tensile strength or flexural strength is becomes indicator, but also depend on the curing effect take place during the production of specimen. In general, after conducting concrete specimen is cured by water at temperature $20{\pm}3^{\circ}C$ in laboratory, and accomplished the assessment of strength, but most of concrete structure is kept in drying condition after moist curing through the prescribed period. However, unlike these trends that technological advances have been made, influence of the difference of curing method on crack strength is not yet clear. Therefore, in this study, it is examined on the effect of curing methods affecting the mechanical property of fiber reinforced concrete, especially crack strength.

Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams (하이브리드 섬유보강재로 보강된 철근콘크리트 보의 휨거동)

  • Yi, Seong-Tae;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • This study was performed to evaluate the flexural behavior of Hybrid fiber sheet (HFC) and Hybrid fiber bar (HFB) strengthened reinforced concrete (RC) beams. According to test results, Hybrid fiber reinforcement strengthened RC beams showed approximately 60 to 200% higher reinforcing effects than that of un-reinforced specimens. In addition, the reinforced beams showed the ideal failure pattern, which is failed presenting the ductile behavior after yielding of the reinforcing bar. More specifically, in the case of HFB reinforced RC beams, the difference with puttying method was not apparent since HFB beams reinforced using the injection of epoxy and bonding of putty showed the similar failure patterns.

Influence of steel fiber and reinforcing details on the ultimate bearing strength of the post-tensioning anchorage zone

  • Kim, Jin-Kook;Yang, Jun-Mo;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.867-883
    • /
    • 2016
  • In this paper, the effects of steel-fiber and rebar reinforcements on the ultimate bearing strength of the local anchorage zone were investigated based on experiments and comparisons between test results and design-equation predictions (AASHTO 2012, NCHRP 1994). Eighteen specimens were fabricated using the same anchorage device, which is one of the conventional anchorage devices, and two transverse ribs were used to secure an additional bearing area for a compact anchorage-zone design. Eight of the specimens were reinforced with only steel fiber and are of two concrete strengths, while six were reinforced with only rebars for two concrete strengths. The other four specimens were reinforced with both rebars and steel fiber for one concrete strength. The test and the comparisons between the design-equation predictions and the test results showed that the ultimate bearing strength and the section efficiency are highly affected by the reinforcement details and the concrete strength; moreover, the NCHRP equation can be conservatively applied to various local anchorage zones for the prediction of the ultimate bearing strength, whereby conditions such as the consideration of the rib area and the calibration factor are changed.

Spalling Reduction Methods of Ultra High-Strength Reinforced Concrete Columns (초고강도 콘크리트 기둥의 폭렬저감방안에 관한 실험적 연구)

  • Shin, Sung-Woo;Yoo, Suk-Hyeong;Kim, In-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.171-178
    • /
    • 2006
  • It was presented that the spalling of high strength concrete exposed to high temperature could be reduced by using polypropylene fiber. However, as the concrete strength increase, the demanded quantity of PP fiber increase and this results in the loss of workability of ultra high strength concrete. The silica fume which is essentially mixed in ultra high strength concrete decrease the permeability of concrete, and this will increase the degree of spalling. In this study the effect of silica fume on the spalling of ultra high strength concrete and the fire resisting efficiency of PP fiber and poly vinyl alchol, instead of PP fiber, for the security of workability were experimentally examined.

An Experimental Study on Shear Strengthening of the R/C Deep Beams Using Carbon and Aramid Fibers (탄소 및 아라미드섬유를 이용한 철근콘크리트 깊은 보의 전단보강에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.56-64
    • /
    • 1999
  • An experimental study was carried out to examine the structural behavior of reinforced concrete deep beams strengthened with aramid fiber sheets, carbon fiber sheets and plates, and to propose the reasonable strengthening method for the deteriorated R.C. deep beams. Results show that the most significant differences in behavior of reinforced concrete deep beams strengthened with fiber sheet and plate were mainly due to various fiber orientations and anchorage. Deep beams diagonally strengthened with carbon fibers show better performance compared with those of vertically, horizontally strengthened specimens and produce the increase in the shear resistance through the redistribution of internal forces after the initial cracks occur. However, strengthened deep beams without anchorages might show unreasonable, brittle peeling-off failure of fiber reinforcements.

  • PDF

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation (2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석)

  • Kim, Bum-Suk;Lee, Kang-Su;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Lee, Dong-Ryul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.142-152
    • /
    • 2010
  • In this study, eleven reinforced concrete beams, without stirrup, using high ductile fiber-reinforced mortar with ground granulated blast furnace slag(SHF Series, SHFSC Series) and standard specimens without or with stirrup(SSS, BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode, the maximum strength, and shear strength. All the specimens were modeled in scale-down size. Test results showed that test specimens(SHF Series, SHFSC Series) was increased respectively the shear strength carrying capacity by 26%, 20% and the ductility capacity by 5.27, 5.75 times in comparison with the standard specimen without stirrup(SSS). And the specimens(SHF Series, SHFSC Series) showed enough ductile behavior and stable flexural failure.