DOI QR코드

DOI QR Code

Mechanical Property of Fiber Reinforced Concrete according to the Change of Curing Method

양생방법 변화에 따른 섬유보강콘크리트의 역학적 특성

  • Received : 2015.12.02
  • Accepted : 2016.02.04
  • Published : 2016.03.01

Abstract

When assessing crack initiation of fiber reinforced concrete, usually tensile strength or flexural strength is becomes indicator, but also depend on the curing effect take place during the production of specimen. In general, after conducting concrete specimen is cured by water at temperature $20{\pm}3^{\circ}C$ in laboratory, and accomplished the assessment of strength, but most of concrete structure is kept in drying condition after moist curing through the prescribed period. However, unlike these trends that technological advances have been made, influence of the difference of curing method on crack strength is not yet clear. Therefore, in this study, it is examined on the effect of curing methods affecting the mechanical property of fiber reinforced concrete, especially crack strength.

섬유보강콘크리트의 균열발생 평가는 보통 인장강도나 휨강도가 지표가 되지만 시험체 제작 과정 시에 이루어지는 양생의 영향도 좌우된다. 일반적으로 콘크리트 시험체는 $20{\pm}3^{\circ}C$의 온도에서 수중양생을 실시한 후 강도 평가를 수행하나 실구조물은 습윤양생을 소정의 기간 동안 실시한 후 건조 상태로 된다. 이러한 기술적인 진보가 이루어지고 있는 경향과는 달리 양생방법의 차이가 균열발생 강도에 미치는 영향은 아직 명확하지 않고 있는 실정이다. 따라서 본 연구에서는 섬유보강콘크리트의 역학적 특성, 특히 균열발생강도에 미치는 양생방법의 영향에 대해서 검토하였다.

Keywords

References

  1. ACI (1992), ACI Manual of Concrete Inspection, ACI Committee, pp.356-378.
  2. Banthia, N. (1995), Uniaxial Tensile Response of Micro Fiber Reinforced Cement Composites, Materials and Structure of RILEM, 25(1), 507-517.
  3. Choi, J. I., Ko, K. T., and Lee, B. Y. (2015), Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers, Journal of the Korea Institute for Structural Maintenance Inspection, 19(4), 49-56. https://doi.org/10.11112/jksmi.2015.19.4.049
  4. Jang, D. I., Chae, W. K., Jung, W. W., and Son, Y. H. (1991), An Experimental Study on the Fracture Energy of Steel Fiber Reinforced Concrete Structures by the Effects of Fiber Contents, Journal of Korea Concrete Institute, 3(4), 79-88.
  5. Kang, S. T., Kim, S. W., Park, J. J., and Ko, K. T. (2008), The Effect of Steel Fiber on the Compressive Strength of the High Strength Steel Fiber Reinforced Cementitious Composites, Journal of the Korea Institute for Structural Maintenance Inspection, 12(3), 101-109.
  6. Kang, S. T., Park, J. J., Ryu, K. S., and Kim, S. W. (2010), The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Preformance Cementitious Composites(UHPCC), Journal of the Korea Institute for Structural Maintenance Inspection, 14(5), 110-118.
  7. Kim, Y. W. (2009), Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers, Journal of Korea Concrete Institute, 21(6), 705-712. https://doi.org/10.4334/JKCI.2009.21.6.705
  8. Kurita, M. and Rokugo, K. (2006), Recent Progress on HPFRCC in Japan, Journal of Advanced Concrete Technology, 4(1), 19-33. https://doi.org/10.3151/jact.4.19
  9. Li, V. C. (1997), Effects of Transition Zone Densification on Fiber/Cement paste Bond Strength Improvement, Journal of Advanced Cement Based Materials, 45(1), 8-17.
  10. Yang, I. H., Kim, K. C., and Cho, C. B. (2015), Flexural Strength of Hybrid Steel Fiber Reinforced Ultra High Strength Concrete Beams, Journal of Korea Concrete Institute, 27(3), 280-287.