• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.044 seconds

Evaluation for Application of the Structural Interface based on BIM (BIM 기반 구조 인터페이스의 적용성 검토)

  • Cheon, Jin-Ho;Shin, Tae-Song;Eom, Jin-Up
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.379-382
    • /
    • 2011
  • 최근 건설 산업에서는 BIM 기반으로 건설프로젝트의 설계에서 부터 시공까지의 업무프로세스를 개선하기 위한 다양한 연구가 진행되고 있다. 본 연구에 앞서 건축구조물을 대상으로 구조설계, 구조해석, 상세설계 등을 수행할 수 있는 상용소프트웨어간의 구조 설계정보 교환을 위한 인터페이스 시스템을 개발하였다. 본 연구에서는 인터페이스 시스템을 실제 구조물의 설계 프로세스에 적용하여, 본 시스템에 대한 실무 활용성 및 문제점 등을 언급하는 적용 사례를 보여주고자 한다.

  • PDF

Fuzzy Theory and Its Application to Structural Engineering (Evaluation of Squash Load of Concrete-filled Tube) (Fuzzy 이론과 구조공학 적용 예 (콘크리트 충전 강관 단주의 압축강도 평가))

  • Mun, Ji-Ho;Kim, Jeong-Jung;Lee, Tae-Hyeong
    • Computational Structural Engineering
    • /
    • v.27 no.4
    • /
    • pp.68-71
    • /
    • 2014
  • 본 학술기사에서는 최근 구조공학에 응용이 활성화되고 있는 퍼지 이론에 대하여 간단히 설명을 하였다. 그리고 퍼지이론의 구조공학 적용 예로, 본 저자가 수행한 퍼지이론을 이용한 원형 CFT의 구속응력 평가 과정을 간략히 소개하였다. 이 예에서도 알 수 있듯이 퍼지이론은 부정확성, 지식의 부족, 애매함에 기인하는 불확실성을 다루는데 있어 적합한 것을 알 수 있으며, 여러 불확성에 인하여 발생하는 오차를 줄이는데 적합한 것으로 판단된다.

A reliability-based criterion of structural performance for structures with linear damping

  • Kovaleva, Agnessa
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.313-320
    • /
    • 2006
  • The reliability analysis of structures subjected to stochastic loading involves evaluation of time and probability of the system's residence in a reference domain. In this paper, we derive an asymptotic estimate of exit time for multi-degrees-of-freedom structural systems. The system's dynamics is governed by the Lagrangian equations with linear dissipation and fast additive noise. The logarithmic asymptotic of exit time is found explicitly as a sum of two terms dependent on kinetic and potential energy of the system, respectively. As an example, we estimate exit time and an associated structural performance for a rocking structure.

The Design and Structural Analysis of the APV Module Structure Using Topology Optimization (위상 최적설계를 이용한 APV Module Structure의 설계 및 구조해석)

  • Kang, Sang-Hoon;Kim, Jun-Su;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.22-30
    • /
    • 2017
  • This paper presents the research results of a light weight through topology optimization and structural safety evaluation through structural analysis of a pressure system structure installed in an off-shore plant. Conducting a structure design according to the wind load and the dynamic load at sea in addition to a self-load and structure stability evaluation are very important for structures installed in off-shore plants. In this study, the wind and dynamic load conditions according to the DNV classification rule was applied to the analysis. The topology optimization method was applied to the structure to obtain a lightweight shape. Phase optimization analysis confirmed the stress concentration portion. Topology optimization analysis takes the shape by removing unnecessary elements in the design that have been designed to form a rib shape. Based on the analysis results about the light weight optimal shape, a safety evaluation through structural analysis and suitability of the shape was conducted. This study suggests a design and safety evaluation of an off-shore plant structure that is difficult for structural safety evaluations using an actual test.

Technique to Evaluate Safety and Loaded Heavy Equipment Grade in RC Building during Demolition Work (RC건축물 해체공사의 안전성 평가기법 및 탑재장비 등급 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.195-204
    • /
    • 2011
  • During mechanical demolition of RC structures, weights of dismantling equipment and demolition waste of building are applied to unexpected load which did not be considered during the design of structural member. Nevertheless, the loading of dismantling equipment and dismantling process are mainly dependent on field managers' field workers' or experiences without considering safety of structural member by a structural engineer. It is urgently required that reflecting actual circumstance of mechanical demolition, safety evaluation method to evaluate the safety and the guideline for appropriate capacity of structural member to support dismantling equipment weight, be provided. Through site investigation and questionnaire on field workers, this paper proposed demolition waste load, load factor, strength reduction factor, and so on. These are essential to safe evaluation of a building, ready to demolition. Considering actual circumstance of mechanical demolition, safety evaluation method of building and design method of slab and beam was suggested to a dilapidated building. An capability to loading of dismantling equipment was proposed, applied to RC slab and RC beam. Therefore, the suggested safety evaluation method and the guideline for an capability to loading of dismantling equipment weight can reasonably evaluate the capacity of structural member in demolition and use effectively as increasing efficiency and improving safety of demolition through proper management of dismantling equipments.

A Structural Analysis on Composite Factors, Visitors' Evaluation and Intent of Revisits in a Food Festival - The Case of the 15th Namdo Food Festival in South Korea - (음식 축제 시스템 구성 요인이 방문객 평가 및 재방문 의도에 미치는 영향 - 제15회 남도음식큰잔치를 대상으로 -)

  • Jin, Young-Jae
    • Culinary science and hospitality research
    • /
    • v.15 no.2
    • /
    • pp.188-204
    • /
    • 2009
  • The important factors of a food festival are divided into hardware and software programs. In this respect, this research aims to study the relationships among the composites of the food festival and its relationship with the visitors' revisit intention. Since the visitors' evaluation is a presumption of their satisfaction, it lies in a constant relationship with satisfaction and the reason why they revisited the festival. Thus, this research examined the influence of the composite factors on visitors' evaluation (operation, experience) and the relationship between operation evaluation and experience evaluation. In addition, it examined the relationship between evaluation factors and the intent of revisits. In conclusion, visitors' evaluation showed a positive effect on the survey about whether they would consider revisiting the food festival. In this context of continuative relationship, the research suggests that it would be necessary to examine the relationship between composite factors, visitors' evaluation, satisfaction and intent of revisits in future research.

  • PDF

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.