• Title/Summary/Keyword: structural evaluation

Search Result 4,836, Processing Time 0.03 seconds

A Study on Fatigue Safety Estimation of Cross Frame of Suspension Bridge(I) - Estimation by Nominal Stress - (현수교 횡프레임의 피로안전성 평가에 관한 연구(I) - 공칭응력에 의한 평가 -)

  • Kyung, Kab Soo;Jeon, Jun Chang;Su, Seok Ku;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.397-407
    • /
    • 1999
  • In this paper, the fatigue safety in the suspension bridge is investigated by using nominal and variable stress, respectively. The technique on structural modeling and the fatigue evaluation using nominal stress are mainly dealt with in this paper. To make the finite element analysis model reflecting the actual structural behavior of the suspension bridge with cross frame, the parametric study is carried out. In this study, the influence of supporting condition. the difference of the results of 2- and 3-D analysis and the number of cross frames modelled in are considered. The nominal stress under the real traffic flow of the bridge is calculated by the combination of the stresses due to the unit DB-24 loading. The nominal stresses for details under consideration are compared with allowable stress ranges specified in the codes and the results are discussed.

  • PDF

Evaluation on Flexural Performance for Light-Weight Composite Floor with Sound Reduction System (층간소음 대응형 경량합성바닥판에 대한 휨성능 평가)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung;Heo, Byung Wook;Hong, Sung Yub
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • The purpose of this study is to propose structural technologies on the light-weight composite floor systems in the unit modular and to evaluate structural performance of the composite floor through flexural experiments. The flexural experiments were carried out on total nine specimens(each three type in shape) using steel flat deck and truss deck. From the results of test, all specimens showed the same failure patterns which exhibited deflection at the center of the specimens due to flexural deformation before concrete crushing at the upper of specimens. Also, we know that the proposed floors satisfied in serviceability and would be safe sufficiently. The ratio of experimental yield load by theoretical nominal load was the distribution of 0.86 to 1.27 with an average 1.04. Coefficient of variation in distribution showed good agreement.

Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines (10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계)

  • Kim, Kyungsik;Kim, Mi Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.205-215
    • /
    • 2017
  • This study presents an example of conceptual design for hollow circular section multi-column tower system subjected to 10MW level wind load by introducing a method based on member utilization that examine both structural stability and economical efficiency. The basic assumptions for the proto type of a multi-column tower that can replace a single-cylinder tower were suggested and structural models were constructed following the assumptions and analyzed for identifying member forces. Based on the calculated member strengths and acting loads, the member utilization of the proposed multi-column tower structures were calculated for axial force, shear, bending and torsion and evaluaed for suitability as a wind tower. Design parameters such as steel tube dimensions, slenderness ratio, and number of floors for braces was proposed in the acceptable range of member utilization for conceptual design of multi-column wind towers.

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF

Structural and Textural Characteristics of Egg Custard with Soused Shrimp Juice (새우젓국물 첨가에 따른 알찜의 구조 및 질감에 관한 연구)

  • 배영희
    • Korean journal of food and cookery science
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 1993
  • Structural and textural characteristics of egg custard with 1.5ft sodium chloride as salt or soused shrimp juice were investigated by SEM, texturometer and sensory evaluation.: 1. Egg custard without sodium chloride showed flat, crosslinkaged structure and no pores. : but the addition of salt or soused shrimp juice developed much of round pores and smooth walls. 2. There were significant difference in hardness between without sodium chloride group and boiled soused shrimp juice group. 3. there were significant difference in appearance, taste and texture, but flavor and total acceptability did not showed significant difference in preference test. In discriminating test, swellness, softness, flavor, color, holes and hardness were important factors affecting the preference to determine the characteristics of egg custard.

  • PDF

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Evaluation of Fatigue Strength Share Effect of the Rust Due to Corrosion at Ship Structural Plate (선체구조 판부재에서 해수부식현상에 기인하는 부식층의 피로강도분담효과에 관한 연구)

  • Kim, Won Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2063-2068
    • /
    • 2013
  • Ship and offshore structures, those are to be used under the seawater conditions are prone to corrosion. In this research, the effect of rust existence on the fatigue strength at structural member of ship and offshore structure was investigated. For this purpose, fatigue tests for the rust removed specimen were conducted. In addition, the comparison of fatigue strength between rust removed specimen and rusted specimen was conducted. With these test results, fatigue strength share effect was investigated. Finally, at this research, it was found that there is fatigue strength share effect on the rust. In comparison of fatigue strength reduction factor, fatigue strength of the rust removed specimen is 18.1% lower than that of the rusted specimen. From the above, it was known that as far as there are not any harmful ingredients in it, rust on the steel plate is beneficial in an aspect of fatigue strength.

Vocational Training and Qualifications Systems in Britain and Germany: Their Distinct Features and Recent Developments (영국과 독일의 직업훈련·숙련자격제도: 특정 및 최근 변화)

  • Jeong, Jooyeon
    • Journal of Labour Economics
    • /
    • v.26 no.1
    • /
    • pp.75-110
    • /
    • 2003
  • It is urgent to systematically understand vocational training and qualification systems in advanced nations in order to evaluate and reform the Korean counterparts. In the British case, the system has been transformed from the market-led one to the state-led one while the German system is still classified as a corporatistic one. This structural difference is crucial to understand their performances and the German one won a relatively more positive evaluation in its performance. However, the structure and function of the German system has lately revealed numerous limitations in face of the political unification and long duration of economic recessions. This study shows that those differences in structural and functional features and recent developments of the systems in two nations are closely associated with their differences in educational philosophies and occupational cultures, roles of the state and employers, and operation mechanisms of training courses and vocational qualifications systems. Understanding those national differences raises a fundamental question on the hasty prescription of some domestic studies that a few policies in the foreign systems must be implanted to reform the Korean counterpart without understanding the fundamental difference between the domestic and those foreign systems.

  • PDF

Evaluation on the Phase-Change Properties in W-doped Ge8Sb2Te11 Thin Films for Amorphous-to-Crystalline Reversible Phase-Change Device (비정질-결정질 가역적 상변환 소자용 Ge8Sb2Te11 박막의 W 도핑에 따른 상변환 특성 평가)

  • Park, Cheol-Jin;Yeo, Jong-Bin;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.133-138
    • /
    • 2017
  • We evaluated the structural, electrical and optical properties of tungsten (W)-doped $Ge_8Sb_2Te_{11}$ thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve thermal stability. 200 mm thick $Ge_8Sb_2Te_{11}$ and W-doped $Ge_8Sb_2Te_{11}$ films were deposited on p-type Si (100) and glass substrates using a magnetron co-sputtering system at room temperature. The fabricated films were annealed in a furnace in the $0{\sim}400^{\circ}C$ temperature range. The structural properties were analyzed using X-ray diffraction (X'pert PRO, Phillips). The results showed increased crystallization temperature ($T_c$) leading to thermal stability in the amorphous state. The optical properties were analyzed using an UV-Vis-IR spectrophotometer (Shimadzu, U-3501, range : 300~3,000 nm). The results showed an increase in the crystalline material optical energy band gap ($E_{op}$) and an increase in the $E_{op}$ difference (${\Delta}E_{op}$). This is a good effect to reduce memory device noise. The electrical properties were analyzed using a 4-point probe (CNT-series). This showed increased sheet resistance ($R_s$), which reduces programming current in the memory device.

Evaluation of the Structural Safety of a Vessel with Different Material(Cr-13)-Supplemented Screw Thread (이종재료가 보충된 나사산을 갖는 용기의 구조안전성 평가)

  • Choi, Yong Hoon;Bae, Jun Ho;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • The dome and neck part of a vessel is generally formed by a hot spinning process with a seamless tube. However, as studies on and design data from the hot spinning process are insufficient, this process has been performed based on trial and error and the experiences of field engineers. Changes in the inner diameter from the bottom to the top of the neck have occurred mainly because of the characteristics of the hot spinning process due to the high-speed rotation of the rollers. In this study, a theoretical and finite element analysis of the vessel is conducted with different material(Cr-13)-supplemented screw threads for tapping and to reduce shape errors. Based on the results, tne structural safety under the operating conditions is evaluated.