• Title/Summary/Keyword: structural evaluation

Search Result 4,837, Processing Time 0.031 seconds

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

Evaluation of an Effective Load Transfer System Applied to a Simple Model of a Wall Frame Structural System (단순 모델을 사용한 추상복합 건물의 효율적인 전이 시스템에 관한 연구)

  • 정영일;윤석한;홍원기;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.23-29
    • /
    • 2002
  • A wall-frame type structural system has been widely used to make full use of a limited land in large cities to satisfy the several functional requirement in one building. However, this type of hybrid structure brought some problems due to the vertical discontinuity of a structural system. The response of a wall-frame type structural system having a deep transfer girder was observed. An arch system was introduced to replace the deep transfer girder. The adequacy of an arch system was observed for the various boundary conditions of a system. The proposed system was compared to a general transfer girder system by applying both gravity load and lateral load. It was observed that an arch system fairly distributes the stress without concentrating stress at a certain location of a system differently from the current transfer girder system. The moment decrement effect of a column can also be obtained by eliminating the large mass of a transfer girder. Also it was investigated that an arch system is more economical and effective than the current transfer girder system.

Characteristic Evaluation of Bending Strength Distributions on Revised Korean Visual Grading Rule (개정된 육안등급 구분에 따른 휨강도 특성 평가)

  • Pang, Sung-Jun;Oh, Jung-Kwon;Park, Chun-Young;Park, Joo-Saeng;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, the visual grading rule of Korea Forest Research Institute (KFRI) was revised and it is necessary to investigate the distribution characteristics of visual graded lumber in accordance with the revised rule. Therefore, in this study, the distribution characteristics of bending strength was investigated with revised visual grading rule and changed prior rule, respectively. The size of specimens was $38{\times}140{\times}3,000$ (mm) and the species were $Larix$ $kaempferi$ and $Pinus$ $koraiensis$. The moisture content was under 18% and the specimens were tested in accordance with ASTM D-198. The number of No. 1 and 2 grades, suitable for structural lumber, was increased when the revised visual grading rule was applied. Moreover, the revised rule was more effective to distinguish sharply between No. 1 and 2 grades and below No. 3 grade. Meanwhile, the lower 5% exclusion limit and allowable stresses were generally decreased when revised visual grading rule had been applied. However, the announcement of Korea Forest Service, tested with small clear specimen, was much lower than the allowable stresses of this test, tested with structural lumber. Therefore, the revision of allowable design values should be considered for more exact use and effective structural design.

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.

Evaluation of Shear Strength of Concrete Layers with Different Strength considering Interfacial Indentation (이종강도 부재간 연결면 조건에 따른 전단강도 평가)

  • Kang, Jae-Yoon;Park, Jong-Sup;Jung, Woo-Tai;Keum, Moon-Seoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.449-455
    • /
    • 2016
  • This study is a part of research to develop a steel-concrete hybrid girder using ultra high-performance concrete with a compressive strength of 80 MPa. To this end, the Eurocode design formula for the shear resistance developed in a concrete-to-concrete interface was examined for the interface between concrete layers of different strengths. To examine the effect of the surface roughness on the shear resistance, a push-out test was conducted on specimens while considering the parameters of the Eurocode design equation. The actual behavior was evaluated with respect to the compressive strength of the concrete, the reinforcement ratio of the shear rebar, and the interfacial surface condition. The specimen with a rough interface shows 20-50% higher shear strength than that estimated by the design equation. In the case of failure mode, abrupt failure tends to occur at the interface of the concrete layer for the specimen with a low reinforcement ratio. It is expected that the shear strength of the concrete layer will increase according to the strength differential in the concrete layers.

Structural assessment of Anti-Freezing Layer with use of Falling Weight Deflectormeter Deflection (Falling Weight Deflectormeter를 이용한 동상방지층의 구조적 특성 분석)

  • Lee, Moon-Sup;Kim, Boo-Il;Jeon, Sung-Il;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • Until now, the thickness design of anti-freezing layer has been empirically conducted using the frost depth determined from the freezing index. This approach cannot consider the structural properties of anti-freezing layer, which can cause the over-design of pavement structure. This paper presents results of structural evaluation of anti-freezing layer using the Falling Weight Deflectormeter (FWD) deflections. The FWD testing was directly conducted on top of the subbase layer located at the embankment, cutting, and boundary area of each section. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer. The deflection reduction rates are 15~55% in the embankment, 11~64% in the cutting, and 2~38% in the boundary, respectively. It was also found that the use of antifree zing layer enables to reduce the Surface Curvature Index (SCI) values up to 24 percent. Fatigue lives show that pavement structure with antifreezing layer are about two times higher than the those without anti-freezing layer. This fact indicates that the anti-freezing layer should be considered as a structural layer in the asphalt pavement system.

Structural Integrity Evaluation of Mechanically Fastened FRP Beams Under the Effects of Sustained Loads and Environments (지속하중과 환경영향을 받은 MF-FRP 보강보의 구조건전성 평가)

  • Lee, Jae-Ha;Kim, Woo-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Mechanically fastening FRP (MF-FRP) strips using nails and anchors, has been shown to provide a more ductile behavior to the strengthened structural element than using bonded FRP. To further advance the state of the knowledge on this strengthening method, the current study examined environmental effects for six months on MF-FRP beams. Reinforced concrete beams strengthened with mechanically fastened FRP strips and subjected to sustained loads for six months were exposed to outdoor weather and constant high temperatures ($40^{\circ}C$). For comparison, the behavior of RC beam with and without sustained loads was evaluated. Results from flexural tests did not show any significant degradation or change of failure mode as a result of sustained load and of environmental effects such as high temperatures and outdoor weather over a period of six months. Failure of the beams was governed by FRP delamination followed by concrete crushing as not much load applied to the nail and anchors because of slip effects.

Evaluation of Flexural Behavior of Hollow Prestressed Concrete Pile for Continuous Pile Wall (주열식 벽체용 중공 프리스트레스트 콘크리트 파일의 휨거동 평가)

  • Lee, Young-Geun;Jang, Min-Jun;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • In the construction site, various earth retaining systems are developed and applied to maintain stability of excavated area and structures. Among the methods, the underground continuous wall and the column-type diaphragm wall methods are especially used in construction site nearby buildings or roads. However, these methods have some disadvantages such as the difficulty of quality control and long curing time because these methods need to cast fresh concrete at the construction site. In addition, these methods are usually applied to the site for the temporary purpose. In this paper, we suggest precast hollow prestressed concrete pile for continuous pile wall system. To investigate the structural behavior of suggested pile, which is the main member of the suggested system, tests pertaining to the structural behavior and prestressing force applied in the pile are conducted. From the test results, it was found that the prestressing force measured is sufficient compared with the value obtained by the design equation and the cracking moment measured is 34% higher than the design value. In addition to the above, this precast hollow prestressed concrete pile has an additional safety margin that the maximum moment is 59.2% higher than the cracking moment which is one of the serviceability limits for the design of the system.

An Evaluation of Progressive Collapse Resisting Capacity of RC Structure Using Static and Dynamic Analysis (정적 및 동적 해석을 이용한 철근콘크리트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.238-245
    • /
    • 2010
  • Progressive collapse is defined as a collapse caused by sectional destruction of a structural member which links to other surrounding structures. Currently the design guidelines for the prevention of progressive collapse is not available in Korea. So, structural engineers have a difficulty in evaluating progressive collapse. In this study, the static and dynamic analysis to evaluate the methods and procedures are conducted using commercial analysis program for RC moment resisting frames. According to the study, DCR value of RC moment resisting frame system based on code in Korea is over 2 and it shows that it can't provide alternate load paths due to the progressive collapse. And additional reinforcement should be considered for the progressive collapse resistance. As a result of vertical deflection and DCR value of linear static analysis and linear dynamic analysis, the results of dynamic analysis were underestimated more than the result of static analysis. Thus, the dynamic coefficient value of 2 provides conservative estimation.

Real-time Health Monitoring of Pipeline Structures Using Piezoelectric Sensors (압전센서를 사용한 배관 구조물의 실시간 건전성 평가)

  • Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2010
  • Pipeline structure is one of core underground infrastructure which transports primary sources. Since the almost pipeline structures are placed underground and connected each other complexly, it is difficult to monitor their structural health condition continuously. In order to overcome this limitation of recent monitoring technique, recently, a Ubiquitous Sensor Network (USN) system based on on-line and real-time monitoring system is being developed by the authors' research group. In this study, real-time pipeline health monitoring (PHM) methodology is presented based on electromechanical impedance methods using USN. Two types of damages including loosened bolts and notches are artificially inflicted on the pipeline structures, PZT and MFC sensors that have piezoelectric characteristics are employed to detect these damages. For objective evaluation of pipeline conditions, Damage metric such as Root Mean Square Deviation (RMSD) value was computed from the impedance signals to quantify the level of the damage. Optimal threshold levels for decision making are estimated by generalized extreme value(GEV) based statistical method. Throughout a series of experimental studies, it was reviewed the effectiveness and robustness of proposed PHM system.