• 제목/요약/키워드: structural element

검색결과 7,447건 처리시간 0.033초

유한요소 구조해석 프로그램의 전후처리 통합 운영 시스템을 위한 객체지향적 모델 (Object-Oriented Models for Integrated Processing System of Finite Element Structural Analysis Program)

  • 서진국;송준엽;신영식;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 1994
  • The pre- and post-processor for finite element structural analysis considering the user-friendly device are developed by using GUI. These can be used on WINDOWS' environment which is realized the multi-tasking and the concurrency by object-oriented paradigm. They are designed to control integratedly the pre-processing, execution and the post-processing of the finite element structural analysis program on multiple windows. These object-oriented modeling approach can be used for complex integrated engineering systems.

  • PDF

원통형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제30권6호
    • /
    • pp.338-342
    • /
    • 2017
  • 본 논문에서는 원통형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 구조안전성 평가는 유한요소해석을 통해 수행하였다. 구조안전성 평가를 위한 최적의 유한요소를 확인하기 위해 원통형 복합재 격자구조체 유한요소모델은 빔, 쉘 그리고 솔리드 요소를 사용해 생성하였다. 쉘과 솔리드 모델의 유한요소 해석결과는 서로 유사하게 발생되었다. 그러나 빔 모델의 경우, 쉘과 솔리드 모델의 결과와 큰 차이가 발생하였다. 이것은 빔 요소가 원통형 복합재 격자구조체 섬유 비교차부의 기계적 물성저하를 고려하지 못하기 때문이다. 원통형 복합재 격자구조체의 구조안전성 평가를 위한 유한요소해석은 쉘 또는 솔리드 요소를 사용해야 하는 것을 확인하였다.

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화 (Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators)

  • 송명관;한인선;김선훈;최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.269-278
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived, The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free vibration control for the beam structures with bonded plate-type piezoelectric sensors and actuators is proposed.

  • PDF

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan;Qi, Zhaohui;Ma, Xu;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.393-417
    • /
    • 2015
  • In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

New decoupled wavelet bases for multiresolution structural analysis

  • Wang, Youming;Chen, Xuefeng;He, Yumin;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.175-190
    • /
    • 2010
  • One of the intractable problems in multiresolution structural analysis is the decoupling computation between scales, which can be realized by the operator-orthogonal wavelets based on the lifting scheme. The multiresolution finite element space is described and the formulation of multiresolution finite element models for structural problems is discussed. Various operator-orthogonal wavelets are constructed by the lifting scheme according to the operators of multiresolution finite element models. A dynamic multiresolution algorithm using operator-orthogonal wavelets is proposed to solve structural problems. Numerical examples demonstrate that the lifting scheme is a flexible and efficient tool to construct operator-orthogonal wavelets for multiresolution structural analysis with high convergence rate.

전선 구조해석 모델을 이용한 진동해석 방법에 관한 연구 (A Study on Vibration Analysis Method Using the Global Structural Analysis Model)

  • 박형식;최수현;이용섭
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.314-322
    • /
    • 2007
  • In general, the vibration and structural analyses have been carried out by using each finite element model separately because of different size of finite element mesh and different focusing area of each analysis. In some cases, however, it is required to perform both global vibration and structural analyses at the same time using a finite element model for global structural analysis, which asks for a special treatment for a vibration analysis. In this study, a technique to perform a global vibration analysis using a finite element model for a global structural analysis has been developed and its effectiveness has been verified by its application to a whole ship.

소형 항공기 미익부 구조 건전성 평가에 관한 연구 (Study on Evaluation of Structural Integrity for Small Aircraft Tail)

  • 이무형;박일경;김성준;안석민
    • 항공우주시스템공학회지
    • /
    • 제6권2호
    • /
    • pp.28-34
    • /
    • 2012
  • Structural integrity evaluation is important item in the aircraft certification. Recently, it is designed for limit load, material weakness about fatigue and corrosion, damage by bird strike in flight to evaluate structural integrity of aircraft. And static/fatigue analysis are performed to secure structural integrity, it was verified by static and fatigue tests. To evaluate the structural integrity of small aircraft tail, structural integrity was calculated by the finite element analysis. In the present study, finite element analysis are performed to pick out load cases in flight occurrence, and secure margin of safety to evaluate structural integrity of KC-100 tail unit. The proprieties of finite element analysis results are compared with the static structure test results. The estimation process of structural integrity for small aircraft tail may help the design.

구조감쇠가 고려된 스펙트럴요소 모델을 이용한 구조손상규명 (Structural Damage Identification by Using the Structurally Damped Spectral Element Model)

  • 김정수;조주용;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the structurally damped spectral element model thinking over a real situation. The structural damage identification analyses are conducted by using the Newton-Raphson method. It is found that, in general Structural Damage Identification by using the Structurally Damped Spectral Element Model provides the same exact damage identification results when compared with the results obtained by the structurally undamped spectral model.

  • PDF