References
- Castrillon-Candas, J. and Amaratunga, K. (2003), "Spatially adapted multiwavelets and sparse representation of integral equations on general geometries", SIAM J. Sci. Comput., 24(5), 1530-1566. https://doi.org/10.1137/S1064827501371238
- Chen, C.M. and Huang, Y.Q. (1995), High Accuracy Theory of Finite Element Methods, Science and Technology Press, Hunan. (in Chinese)
- Chen, X.F., Yang, S.J. and He, Z.J. (2004), "The construction of wavelet finite element and its application", Finite Elem. Anal. Des., 40, 541-554. https://doi.org/10.1016/S0168-874X(03)00077-5
- Davis, G.M., Strela, V. and Turcajova, R. (1999), Multiwavelet Construction Via the Lifting Scheme, Wavelet Analysis and Multiresolution Methods, Lecture Notes in Pure and Applied Mathematics (Ed. Marcel Dekker), New York.
- D'Heedene, S., Amaratunga, K. and Castrillón-Candás, J. (2005) "Generalized hierarchical bases: a Wavelet- Ritz-Galerkin framework for Lagrangian FEM", Eng. Comput., 22(1), 15-37. https://doi.org/10.1108/02644400510572398
- He, Y.M., Chen, X.F., Xiang, J.W. and He, Z.J. (2007), "Adaptive multiresolution finite element method based on second generation wavelets", Finite Elem. Anal. Des., 43, 566-579. https://doi.org/10.1016/j.finel.2006.12.009
- Ma, J.X., Xue, J.J., Yang, S.J. and He, Z.J. ( 2003), "A study of the construction and application of a Daubechies wavelet-based beam element", Finite Elem. Anal. Des., 39(10), 965-975. https://doi.org/10.1016/S0168-874X(02)00141-5
- Mallat, S.G. (1998), A Wavelet Tour of Signal Processing, Academic Press, Boston.
- Pinho, P., Ferreira, P.J.S.G. and Pereira, J.R. (2004), "Multiresolution analysis using biorthogonal and interpolating wavelets", IEEE Antenn. Propag. Soc. Symp., 2, 1483-1486.
- Sudarshan, R., Amaratunga, K. and Gratsch, T. (2006), "A combined approach for goal-oriented error estimation and adaptivity using operator-customized finite element wavelets", Int. J. Numer. Meth. Eng., 66, 1002-1035. https://doi.org/10.1002/nme.1578
- Sweldens, W. (1997), "The lifting scheme: a construction of second generation wavelets", SIAM J. Math. Anal., 29(2), 511-546.
- Vasilyev, O.V. and Bowman, C. (2000), "Second generation wavelet collocation method for the solution of partial differential equations", J. Commun. Phys., 165, 660-693. https://doi.org/10.1006/jcph.2000.6638
- Wang, X.C. (2002), The Finite Element Methods, Tsing Hua University Press, Beijing. (in Chinese)
- Xiang, J.W., He, Z.J. and Chen, X.F. ( 2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
Cited by
- An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis vol.15, pp.12, 2015, https://doi.org/10.3390/s150922750
- A two-step damage identification approach for beam structures based on wavelet transform and genetic algorithm vol.51, pp.3, 2016, https://doi.org/10.1007/s11012-015-0227-8
- Wavelet-based numerical analysis: A review and classification vol.81, 2014, https://doi.org/10.1016/j.finel.2013.11.001
- The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems vol.50, pp.5, 2014, https://doi.org/10.12989/sem.2014.50.5.679
- The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval vol.38, pp.6, 2010, https://doi.org/10.12989/sem.2011.38.6.733
- Galerkin Meshfree Methods: A Review and Mathematical Implementation Aspects vol.5, pp.4, 2010, https://doi.org/10.1007/s40819-019-0665-4