• Title/Summary/Keyword: structural detail

Search Result 796, Processing Time 0.033 seconds

Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar (이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.

Reversed Cyclic Loading Test of Post-Tensioned Precast Concrete Beam-Column Connections with 2400MPa Prestressing Strands (2400MPa 긴장재가 적용된 포스트텐션 프리캐스트 콘크리트 보-기둥 접합부의 반복가력실험)

  • Hwang, Jin-Ha;Choi, Seung-Ho;Lee, Deuck Hang;Kim, Kang Su;Woo, Woon Tack
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.45-52
    • /
    • 2017
  • The precast concrete (PC) method has many advantages in fast construction, quality control, etc. In domestic construction market, however, its application has been quite limited because of the concerns about structural integrity and seismic performances due to the discrete connections between precast concrete members. By applying the post-tensioning method, the precast beam-column connection can be well tightened, allowing improved structural integrity, and proper seismic performances can be also achieved. In this study, reversed cyclic tests have been conducted on the beam-column connection specimens, where the test variables included the compressive strength of grouting mortar and the tensile strengths of prestressing strands, based on which their seismic performances have been examined in detail. The post-tensioned PC beam-column connections showed good seismic performances comparable to that of the monolithic reinforced concrete connection specimen. When 2400 MPa prestressing strands are applied to the beam-column connection, it is preferable to adjust the prestress level similar to that applied for the 1860 MPa prestressing strands to avoid premature local crushing failures at the beam-column connections.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Evaluation of Moment Transfer Efficiency According to the Connection Length of the Column Flange and the Beam Web of the H-beam Column Connection (H형강 보-기둥 접합부의 보 웨브 단부접합길이에 따른 모멘트전달효율 평가)

  • Hong, Young-Ju;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.193-203
    • /
    • 2022
  • In this study, in order to compare the seismic performance of steel structure beam-column connection details and non-scallop connection details mainly used in Korea, a full-scale static cyclic loading test and FEM analysis were conducted through the same modeling as the experiment. For quantitative numerical comparison, the strain concentration ratio and moment transfer efficiency used in previous studies were cited. As the welding area of the beam web decreased, the deformation rate of the beam flange increased, and the plastic deformation capacity according to the rotation angle decreased or brittle fracture occurred. Comparing the analysis results with the experimental results, the possibility of brittle fracture tended to increase when the web welding ratio for the total cross-sectional area of H-shaped fell below 60%.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams

  • Du, Mengjie;Liu, Jun;Ye, Wenbin;Yang, Fan;Lin, Gao
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.179-194
    • /
    • 2022
  • The bending, buckling and free vibration responses of functionally graded material (FGM) beams are investigated semi-analytically by the scaled boundary finite element method (SBFEM) in this paper. In the concepts of the SBFEM, the dimension of computational domain can be reduced by one, therefore only the axial dimension of the beam is discretized using the higher order spectral element, which reduces the amount of calculation and greatly improves the calculation efficiency. The governing equation of FGM beams is derived in detail by the means of the principle of virtual work. Compared with the higher-order beam theory, fewer parameters and simpler control equations are used. And the governing equation is transformed into a first-order ordinary differential equation by introducing intermediate variables. Analytical solutions of the governing equation can be obtained by pade series expansion in the direction of thickness. Numerical example are compared with the numerical solutions provided by the previous researchers to verify the accuracy and applicability of the proposed method. The results show that the proposed formulations can quickly converge to the reference solutions by increasing the order of higher order spectral elements, and high accuracy can be achieved by using a small number of the elements. In addition, the influence of the structural sizes, material properties and boundary conditions on the mechanical behaviors of FG beams subjected to different load types is discussed.

Aircraft Fuel Efficiency Improvement and Effect through APMS (APMS 활용을 통한 항공기 연비향상 및 기대효과 )

  • Jae Leame Yoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2023
  • SHM (Structural Health Monitoring) technique for monitoring aircraft structural health and damage, EHM (Engine Health Monitoring) for monitoring aircraft engine performance, and APM (Application Performance Management) is used for each function. APMS (Airplane Performance Monitoring System) is a program that comprehensively applies these techniques to identify the difference between the performance manual provided by the manufacturer and the actual fuel mileage of the aircraft and reflect it in the flight plan. The main purpose of using APMS is to understand the performance of each aircraft, to plan and execute flights in an optimal way, and consequently to reduce fuel consumption. First, it is to check the fuel efficiency trend of each aircraft, check the correlation between the maintenance work performed and the fuel mileage, find the cause of the fuel mileage increase/decrease, and take appropriate measures in response. Second, it is to find the cause of fuel mileage degradation in detail by checking the trends by engine performance and fuselage drag effect. Third, the APMS is to be used in making maintenance work decisions. Through APMS, aircraft with below average fuel mileage are identified, the cause of fuel mileage degradation is identified, and appropriate corrective actions are determined. Fourth, APMS data is used to analyze the economic analysis of equipment installation investment. The cost can be easily calculated as the equipment installation cost, but the benefit is fuel efficiency improvement, and the only way to check this is the manufacturer's theory. Therefore, verifying the effect after installation and verifying the economic analysis is to secure the appropriateness of the investment. Through this, proper investment in fuel efficiency improvement equipment will be made, and fuel efficiency will be improved.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.