DOI QR코드

DOI QR Code

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan (College of Science, Technology, Engineering & Mathematics, Murdoch University) ;
  • Aleksandar N. Nikoloski (College of Science, Technology, Engineering & Mathematics, Murdoch University) ;
  • Parisa A. Bahri (College of Science, Technology, Engineering & Mathematics, Murdoch University) ;
  • Dan Li (College of Science, Technology, Engineering & Mathematics, Murdoch University)
  • Received : 2023.03.13
  • Accepted : 2024.01.04
  • Published : 2024.01.25

Abstract

In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

Keywords

Acknowledgement

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.05-2020.06. The authors acknowledge the support received from Murdoch SEIT Small Grant Scheme (2016). T. Phan's PhD study was supported by Australia Awards Scholarship. The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. The authors thank Ms Caitlin Sweeney for band gap measurement and analysis.

References

  1. Addamo, M., Augugliaro, V., Di Paola, A.V. Loddo, E.G.L. and Palmisano, L. (2005), "Removal of drugs in aqueous systems by photoassisted degradation", J. Appl. Electrochem., 35(7), 765-774. https://doi.org/10.1007/s10800-005-1630-y
  2. Ahmad, M., Ahmed, E., Hong, Z.L., Ahmed, W., Elhissi, A. and Khalid, N.R. (2014), "Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts", Ultrasonics Sonochem., 21(2), 761-773. https://doi.org/10.1016/j.ultsonch.2013.08.014
  3. Aono, H., Sato, M., Traversa, E., Sakamoto, M. and Sadaoka, Y. (2001), "Design of ceramic materials for chemical sensors: effect of SmFeO3 processing on surface and electrical properties", J. Am. Ceram. Soc., 84(2), 341-47. https://doi.org/10.1111/j.1151-2916.2001.tb00660.x
  4. Bansal, P., Verma, A. and Talwar, S.J.C.E.J. (2018), "Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode", Chem. Eng. J., 349, 838-848. https://doi.org/10.1016/j.cej.2018.05.140
  5. Bafana, A., Devi, S.S. and Chakrabarti, T.J.E.R. (2011), "Azo dyes: Past, present and the future", Environ. Rev., 19, 350-371. https://doi.org/10.1139/a11-018
  6. Bellakki, M.B., Kelly, B.J. and Manivannan, V. (2010), "Synthesis, characterization, and property studies of (La, Ag) FeO3 (0.0 ≤ x ≤ 0.3) perovskites", J. Alloys Compd., 489(1), 64-71. https://doi.org/10.1016/j.jallcom.2009.08.059
  7. Berenov, A., Angeles, E., Rossiny, J., Raj, E., Kilner, J. and Atkinson, A. (2008), "Structure and transport in rare-earth ferrates", Solid State Ionics, 179(21), 1090-1093. https://doi.org/10.1016/j.ssi.2008.01.025
  8. Canle Lopez, M., Vilarino, S., Fernandez, M.I., Faria, J., Canle L., M. and Santaballa, J.A. (2013), "Mechanism of aqueous degradation of ketoprofen by heterogeneous photocatalysis", Appl. Catal. B Environ., 142-143, 633-646. https://doi.org/10.1016/j.apcatb.2013.05.018
  9. Chandradass, J. and Kim, K.H. (2010), "Nano-LaFeO3 powder preparation by calcining an emulsion precursor", Mater. Chem. Phys., 122(2-3), 329-332. https://doi.org/10.1016/j.matchemphys.2010.03.039
  10. Chequer, F.M.D., de Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C., Zanoni, M.V.B. and de Oliveira, D.P. (2013) Textile Dyes: Dyeing Process and Environmental Impact, in Eco-Friendly Textile Dyeing and Finishing, M. Gunay, Editor. https://doi.org/10.5772/53659
  11. Chen, H. and N. Umezawa, (2014), "Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3", Phys. Rev. B, 90(3), 035202. https://doi.org/10.1103/PhysRevB.90.035202
  12. Chen, Q., Wu, P., Li, Y., Zhu, N. and Dang Z. (2009), "Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation", J. Hazard. Mater., 168(2), 901-908. https://doi.org/10.1016/j.jhazmat.2009.02.107
  13. Chen, Y., Hu, C., Qu, J. and Yang, M. (2008), "Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation", J. Photochem. Photobiol. A Chem., 197(1), 81-87. https://doi.org/10.1016/j.jphotochem.2007.12.007
  14. Corcoran, J., Winter, M.J. and Tyler, C.R. (2010), "Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish", Critic. Rev. Toxicol., 40(4), 287-304. https://doi.org/10.3109/10408440903373590
  15. Deepeka, Kaur, P., Jyoti, Bansal, S. and Singhal S. (2022), "In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants", Adv. Nano Res., 13(6) 527-543. https://doi.org/10.12989/anr.2022.13.6.527
  16. Djouadi, L., Khalaf, H., Boukhatem, H., Boutoumi, H., Kezzime, A., Santaballa, J.A. and Canle, M. (2018), "Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi2S3TiO2-Montmorillonite nanocomposites under simulated solar irradiation", Appl. Clay Sci., 166, 27-37. https://doi.org/10.1016/j.clay.2018.09.008
  17. Ding, J., Lu, X., Shu, H., Xie, J. and Zhang, H. (2010), "Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst", Mater. Sci. Eng. B, 171(1), 31-34. https://doi.org/10.1016/j.mseb.2010.03.050
  18. Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W. and Park S.-E. (2001), "New high temperature morphotropic phase boundary piezoelectrics based on Bi (Me)O3-PbTiO3 ceramics", Japan. J. Appl. Phys., 40(10R), 5999. https://doi.org/10.1143/JJAP.40.5999
  19. Feng, J., Hu, X., Yue, P. L., Zhu, H. Y. and Lu, G. Q. (2003), "Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction", Water Res., 37(15), 3776-3784. https://doi.org/10.1016/S0043-1354(03)00268-9
  20. Huang, Y., Wei, Y., Cheng, S., Fan, L., Li, Y., Lin, J. and Wu, J. (2010), "Photocatalytic property of nitrogen-doped layered perovskite K2La2Ti3O10", Solar Energy Mater. Solar Cell., 94(5), 761-766. https://doi.org/10.1016/j.solmat.2009.12.020
  21. Ju, L., Chen, Z., Fang, L., Dong, W., Zheng, F. and Shen, M. (2011), "Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles", J. Am. Ceram. Soc., 94(10), 3418-3424. https://doi.org/10.1111/j.1551-2916.2011.04522.x
  22. Khalil, K.M.S., Mahmoud, A.H. and Khairy, M. (2022). "Formation and textural characterization of size-controlled LaFeO3 perovskite nanoparticles for efficient photocatalytic degradation of organic pollutants", Adv. Powder Technol., 33, 103429. https://doi.org/10.1016/j.apt.2022.103429
  23. Khairy, M., Mahmoud, A.H. and Khalil, K.M.S. (2021). "Synthesis of highly crystalline LaFeO3 nanospheres for phenoxazinone synthase mimicking activity", RSC Adv., 11, 17746-17754. https://doi.org/10.1039/D1RA02295D
  24. Lee, H, Park, S.H., Park Y.K., Kim B.H., Kim S.J. and Jung S.C. (2013), "Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma", Chem. Centr. J., 7(1), 156. https://doi.org/10.1186/1752-153X-7-156
  25. Li, L. and Wang, X. (2016), "Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles", J. Sol-Gel Sci. Technol., 79(1), 107-113. https://doi.org/10.1007/s10971-016-4017-0
  26. Li, L., Wang, X. and Zhang, Y. (2014a), "Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis", Mater. Res. Bull., 50, 18-22. https://doi.org/10.1016/j.materresbull.2013.10.027
  27. Li, L., Zhang, M., Tian, P., Gu, W. and Wang, X. (2014b), "Synergistic photocatalytic activity of LnFeO3 (Ln=Pr, Y) perovskites under visible-light illumination", Ceram. Int., 40(9), 13813-13817. https://doi.org/10.1016/j.ceramint.2014.05.097
  28. Li, S., Jing, L., Fu, W., Yang, L., Xin, B. and Fu, H. (2007), "Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation", Mater. Res. Bull., 42(2), 203-212. https://doi.org/10.1016/j.materresbull.2006.06.010
  29. Li, Z., Xue, H., Wang, X. and Fu, X. (2006), "Characterizations and photocatalytic activity of nanocrystalline La1.5Ln0.5Ti2O7 (Ln=Pr, Gd, Er) solid solutions prepared via a polymeric complex method", J. Mol. Catal. A Chem., 260(1), 56-61. https://doi.org/10.1016/j.molcata.2006.06.056
  30. Martinez, C., Vilarino, S., Fernandez, M.I., Faria, J., Canle L., M. and Santaballa, J.A. (2013), "Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution", Appl. Catal. B Environ., 142, 633-646. https://doi.org/10.1016/j.apcatb.2013.05.018
  31. Martinez-Huitle, C.A. and Brillas, E. (2009), "Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review", Appl. Catal. B Environ., 87(3), 105-145. https://doi.org/10.1016/j.apcatb.2008.09.017
  32. Mizoguchi, H., Eng, H.W. and Woodward, P.M. (2004), "Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+", Inorgan. Chem., 43(5), 1667-1680. https://doi.org/10.1021/ic034551c
  33. Niaei H.A. and Rostamizadeh M. (2020), "Adsorption and electro-Fenton processes over FeZSM-5 nanozeolite for tetracycline removal from wastewater", Adv. Nano Res., 9(3), 173-181. https://doi.org/10.12989/anr.2020.9.3.173
  34. Niu, X., Li, H. and Liu, G. (2005), "Preparation, characterization and photocatalytic properties of REFeO3 (RE=Sm, Eu, Gd)", J. Mol. Catal. A Chem., 232(1), 89-93. https://doi.org/10.1016/j.molcata.2005.01.022
  35. Oturan, M.A. and Aaron, J.J. (2014), "Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review", Critic. Rev. Environ. Sci. Technol., 44(23), 2577-2641. https://doi.org/10.1080/10643389.2013.829765
  36. Pandey, S.K., Bindu, R., Bhatt, P., Chaudhari, S.M. and Pimpale, A.V. (2005), "Synthesis and investigation of structural and electronic properties of Pr1-xCaxFeO3 (0⩽x⩽0.2) compounds", Physica B Condens. Matter., 365(1), 47-54. https://doi.org/10.1016/j.physb.2005.04.036
  37. Parida, K.M., Reddy, K.H., Martha, S. Das D.P. and Biswal, N. (2010), "Fabrication of nanocrystalline LaFeO3: An efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition", Int. J. Hydrogen Energy, 35(22), 12161-12168. https://doi.org/10.1016/j.ijhydene.2010.08.029
  38. Phan, T.T.N., Nikoloski, A.N., Bahri P.A. and Li, D. (2018a), "Optimizing photocatalytic performance of hydrothermally synthesized LaFeO3 by tuning material properties and operating conditions", J. Environ. Chem. Eng., 6(1), 1209-1218. https://doi.org/10.1016/j.jece.2018.01.033
  39. Phan, T.T.N., Nikoloski, A.N., Bahri P.A. and Li, D. (2018b), "Adsorption and photo-Fenton catalytic degradation of organic dyes over crystalline LaFeO3-doped porous silica", RSC Adv., 8(63), 36181-36190. https://doi.org/10.1039/C8RA07073C
  40. Phan, T.T.N., Nikoloski, A.N., Bahri P.A. and Li, D. (2018c), "Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light", J. Ind. Eng. Chem., 61, 53-64. https://doi.org/10.1016/j.jiec.2017.11.046
  41. Phan, T.T.N., Dinh, T.T.M., Nguyen, M.D., Li, D., Phan, C.N., Pham, T.K., Nguyen, C.T. and Pham, T.H. (2022), "Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection", Sensors Actuat. B Chem., 354, 131195. https://doi.org/10.1016/j.snb.2021.131195
  42. Qin, C., Li, Z., Chen, G., Zhao, Y., Lin, T. (2015), "Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes", J. Power Sourc., 285, 178-184. https://doi.org/10.1016/j.jpowsour.2015.03.096
  43. Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. (2003), "Ln1-xSrx Co1-yFeyO3-δ (Ln= Pr, Nd, Gd, x= 0.2, 0.3) for the electrodes of solid oxide fuel cells", Solid State Ionics, 158(1), 55-65. https://doi.org/10.1016/S0167-2738(02)00757-9
  44. Rodriguez-Gil, J.L., Catala, M., Alonso, S.G., Maroto, R.R., Valcarcel, Y., Segura, Y., Molina, R., Melero, J.A., Martinez, F. (2010), "Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay", Chemosphere, 80(4), 381-388. https://doi.org/10.1016/j.chemosphere.2010.04.045
  45. Soderlind, F., Selegard, L., Nordblad, P., Uvdal, K. and Kall, P.O. (2009), "Sol-gel synthesis and characterization of polycrystalline GdFeO3 and Gd3Fe5O12 thin films", J. Sol-Gel Sci. Technol., 49(2), 253-259. https://doi.org/10.1007/s10971-008-1859-0
  46. Safari, G.H., Mahvi, A. H., Yaghmaeian, K., Nabizadeh, R. and Alimohammadi, M. (2015), "Optimization of sonochemical degradation of tetracycline in aqueous solution using sonoactivated persulfate process", J. Environ. Health Sci. Eng., 13, 76-76. https://doi.org/10.1186/s40201-015-0234-7
  47. Shah, A.H. and Rather M.A. (2021), "Pharmaceutical residues: new emerging contaminants and their mitigation by nanophotocatalysis", Adv. Nano Res., 10(4), 397-414. https://doi.org/10.12989/anr.2021.10.4.397
  48. Shen, H., Xue, T., Wang, Y., Cao, G., Lu, Y. and Fang, G. (2016). "Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination", Mater. Res. Bull., 84, 15-24. https://doi.org/10.1016/j.materresbull.2016.07.024
  49. Soon, A.N. and Hameed, B.H. (2011), "Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process", Desalination, 269(1), 1-16. https://doi.org/10.1016/j.desal.2010.11.002
  50. Shi, J.W., Yan, X., Cui, H.J., Zong, X., Fu, M.L., Chen, S., Wang, L. (2012), "Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light", J. Mol. Catal. A Chem., 356, 53-60. https://doi.org/10.1016/j.molcata.2012.01.001
  51. Shi, J., Ai, Z. and Zhang, L. (2014), "Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles", Water Res., 59, 145-153. https://doi.org/10.1016/j.watres.2014.04.015
  52. Thakur, P., Chahar, D. and Thakur, A. (2022), "Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites", Adv. Nano Res., 12(4), 415-426. https://doi.org/10.12989/anr.2022.12.4.415
  53. Thirumalairajan, S., Girjia, K., Ganesh I., Managalaraj, D., Viswanathan C., Balamurugan A. and Ponpandian N. (2012a), "Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity", Chem. Eng. J., 209, 420-428. https://doi.org/10.1016/j.cej.2012.08.012
  54. Thirumalairajan, S., Girjia, K., Ganesh V., Managalaraj, D., Viswanathan C. and Ponpandian N. (2012b), "Novel synthesis of LaFeO3 nanostructure dendrites: A systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds", Cryst. Growth Des., 13(1), 291-302. https://doi.org/10.1021/cg3014305
  55. Thirumalairajan, S., Girjia, K., Mastelaro V.R., Ganesh V. and Ponpandian N. (2014), "Detection of the neurotransmitter dopamine by a glassy carbon electrode modified with self-assembled perovskite LaFeO3 microspheres made up of nanospheres", RSC Adv., 4(49), 25957-25962. https://doi.org/10.1039/C4RA03467H
  56. Thirumalairajan, S., Girjia, K., Hebalkar, N.Y., Managalaraj, D., Viswanathan, C. and Ponpandian N. (2013), "Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities", RSC Adv., 3(20), 7549-7561. https://doi.org/10.1039/C3RA00006K
  57. Tong, T., Zhang, H., Chen, J., Jin, D. and Cheng J. (2016), "The photocatalysis of BiFeO3 disks under visible light irradiation", Catal. Commun., 87, 23-26. https://doi.org/10.1016/j.catcom.2016.08.030
  58. Vu, B.K., Snisarenko, O., Lee H. S., Shin E. W. (2010), "Adsorption of tetracycline on La-impregnated MCM-41 materials", Environ. Technol., 31(3), 233-241. https://doi.org/10.1080/09593330903453210
  59. Xue, Z., Wang, T., Chen, B., Malkoske, T., Yu, S., Tang, Y. (2015), "Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method", Materials, 8(9), 6360-6378. http:/doi.org/10.3390/ma8095310
  60. Yesilova, E., Osman, B., Kara, A., Ozer, E.T. (2018), "Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption", Sep. Purif. Technol., 200, 155-163. https://doi.org/10.1016/j.seppur.2018.02.002
  61. Zhang, G., Liu, G., Wang, L. and Irvine, J.T.S. (2016), "Inorganic perovskite photocatalysts for solar energy utilization", Chem. Soc. Rev., 45(21), 5951-5984. https://doi.org/10.1039/C5CS00769K
  62. Zhang, P., Shao, C., Zhang, M., Guo, Z., Mu, J., Zhang, Z., Zhang, X. and Liu, Y. (2012), "Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers: A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity", J. Hazard. Mater., 217, 422-428. https://doi.org/10.1016/j.jhazmat.2012.03.046
  63. Zhao, H.J., Ren, W., Yang, Y., Chen, X. M., Bellaiche, L. (2013), "Effect of chemical and hydrostatic pressures on structural and magnetic properties of rare-earth orthoferrites: a first-principles study", J. Phys. Condens. Matter., 25(46), 466002. https://doi.org/10.1088/0953-8984/25/46/466002
  64. Zhou, M., Li, W., Du, Y., Kong, D., Wang, Z., Meng, Sun, X., Yan, T., Kong D. and You, J. (2016), "Hydrothermal synthesis of bismuth ferrite Fenton-like catalysts and their properties", J. Nanopart. Res., 18(11), 346. https://doi.org/10.1007/s11051-016-3665-x
  65. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu X., Yang, X., Zhao, Z. and Li, J. (2014), "Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis", ACS Catal., 4(9), 2917-2940. https://doi.org/10.1021/cs500606g
  66. Zhu, X.D., Wang, Y.J., Sun, R.J. and Zhou, D.M. (2013), "Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2", Chemosphere, 92(8), 925-932. https://doi.org/10.1016/j.chemosphere.2013.02.066