• Title/Summary/Keyword: structural analysis and design

Search Result 6,891, Processing Time 0.033 seconds

Structural Analysis for VVIP Cabin Compartment Modification STC of Commercial Airplane

  • Lee, Sang Hoon;Bang, Dae Han;Choi, Sang Min;Choi, Hang Suk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.30-39
    • /
    • 2021
  • This paper presents a study on the design and structural substantiation of the interior structure of the new VVIP aircraft. In this study, the structural design and analysis of the compartment with aluminum alloy and sandwich composite panel were performed. The structural design requirements from the Federal Aviation Administration were identified. The structural analysis of the compartment was performed by the utilization of the finite element analysis method, for the structural design process. Therefore, the designed cabin compartment secured the structural integrity, and satisfied its certification standards and design requirements via structural analysis.

Dynamic sensitivity analysis and optimum design of aerospace structures

  • Gu, Yuanxian;Kang, Zhan;Guan, Zhenqun;Jia, Zhiwen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • The research and applications of numerical methods of design optimization on structural dynamic behaviors are presented in this paper. The emphasis is focused on the dynamic design optimization of aerospace structures, particularly those composed of composite laminate and sandwich plates. The methods of design modeling, sensitivity analysis on structural dynamic responses, and the optimization solution approaches are presented. The numerical examples of sensitivity analysis and dynamic structural design optimization are given to demonstrate the effectiveness of the numerical methods.

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

Evaluation of Structural Integrity about Structural Design for Internal Components of Aircraft Engine (항공기 엔진 구성품 내부 구조 설계에 대한 구조 안전성 평가)

  • Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.58-62
    • /
    • 2023
  • In this work, the structural integrity was investigated of the structural design results of internal components for the aircraft engine. The radiator and intercooler were combined with the internal components of the engine. Therefore, the safety of the radiator and intercooler was investigated during flight conditions. The structural integrity was evaluated through structural analysis, using the finite element analysis method. The acceleration load for structural design and analysis was considered. The structural safety evaluation found the structural design results to be valid.

A Study on Structural Design and Analysis of Small Engine Test Equipment for Use in Aircraft (항공기 소형 엔진 시험 장치의 구조 설계 및 해석 연구)

  • Back, Kyeongmi;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The subject of this study dealt with the structural safety analysis regarding the measured thrust test equipment as noted on a small engine. In this work, the structural design and analysis of steel and aluminum alloy structure for a small engine test of equipment were performed. Firstly, the structural design requirements of the engine test equipment were identified and investigated. After the structural design was reviewed, next the structural analysis of the engine test equipment was performed by the utilization of the finite element analysis method. The study was performed to determine that the stress and displacement analysis was appropriately managed regarding the applied load condition. As a result, it was determined that through the structural analysis, this study has confirmed that the designed engine test equipment is approved for safety, and meets its design purpose at this time.

Linear and Nonlinear Strut-Tie Model Approaches for Analysis and Design of Structural Concrete (콘크리트 부재의 해석/설계를 위한 선형 및 비선형 스트럿-타이 모델 방법)

  • 윤영묵;김병헌
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, the linear and nonlinear strut-tie model approaches for the analysis and design of concrete structures are suggested. The validity of the approaches are examined through the strength analysis of four dapped-end beams tested to failure. According to the analysis results, the nonlinear strut-tie model approach which takes the various characteristics of nonlinear behaviors into account in the analysis and design of structural concrete and predicts the strength of structural concrete proven to be an effective method for structural analysis and design.

  • PDF

Structural Design and Analysis of Sandwich Composite Structure for Floor Board Structure (샌드위치 복합재 바닥 구조물의 구조 설계 및 해석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.64-67
    • /
    • 2017
  • This work dealt with structural safety analysis about sandwich composite structure of automotive floor board. In this work, structural design and analysis of sandwich composite structure for automobile floor board were performed. Firstly, structural design requirement of automobile floor board was investigated. After structural design, the structural analysis of the automobile floor board were performed by the finite element analysis method. It was performed that the stress and displacement analysis at the applied load condition. After structural test of target structure, structural test results were compared with analysis results. Through the structural analysis, it was confirmed that the designed floor board structure is safety.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

Study on Design, Manufacturing and Test Evaluation using Composite Materials of Vertical Axis Wind Turbine Blade (수직축 풍력 블레이드의 복합재 적용 설계, 제작 및 시험 평가 연구)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.58-63
    • /
    • 2018
  • This work dealt with the design and manufacturing of composite blades of a vertical axis wind turbine system. In this work, aerodynamic and structural designs of sandwich composite blades for a vertical axis wind turbine system were performed. First, the aerodynamic and structural design requirements of the composite blades were investigated. After the structural design was complete, a structural analysis of the wind turbine blades was performed using the finite element analysis method. It was performed with the stress and displacement analysis at the applied load condition. A design modification for the structurally weak part was proposed as a result of the structural analysis. Through another structural analysis, it was confirmed that the final designed blade structure is safe.