• 제목/요약/키워드: strongly C-regular ring

검색결과 14건 처리시간 0.021초

ON RIGHT REGULARITY OF COMMUTATORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.853-868
    • /
    • 2022
  • We study the structure of right regular commutators, and call a ring R strongly C-regular if ab - ba ∈ (ab - ba)2R for any a, b ∈ R. We first prove that a noncommutative strongly C-regular domain is a division algebra generated by all commutators; and that a ring (possibly without identity) is strongly C-regular if and only if it is Abelian C-regular (from which we infer that strong C-regularity is left-right symmetric). It is proved that for a strongly C-regular ring R, (i) if R/W(R) is commutative, then R is commutative; and (ii) every prime factor ring of R is either a commutative domain or a noncommutative division ring, where W(R) is the Wedderburn radical of R.

On SF-rings and Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.397-406
    • /
    • 2013
  • A ring R is called a left (right) SF-ring if simple left (right) R-modules are flat. It is still unknown whether a left (right) SF-ring is von Neumann regular. In this paper, we give some conditions for a left (right) SF-ring to be (a) von Neumann regular; (b) strongly regular; (c) division ring. It is proved that: (1) a right SF-ring R is regular if maximal essential right (left) ideals of R are weakly left (right) ideals of R (this result gives an affirmative answer to the question raised by Zhang in 1994); (2) a left SF-ring R is strongly regular if every non-zero left (right) ideal of R contains a non-zero left (right) ideal of R which is a W-ideal; (3) if R is a left SF-ring such that $l(x)(r(x))$ is an essential left (right) ideal for every right (left) zero divisor x of R, then R is a division ring.

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.

Strong Reducedness and Strong Regularity for Near-rings

  • CHO, YONG UK;HIRANO, YASUYUKI
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.587-592
    • /
    • 2003
  • A near-ring N is called strongly reduced if, for $a{\in}N$, $a^2{\in}N_c$ implies $a{\in}N_c$, where $N_c$ denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify all reduced, and strongly reduced near-rings of order ${\leq}7$.

  • PDF

ON STRONG FORM OF REDUCEDNESS

  • Cho, Yong-Uk
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2008
  • A near-ring N is said to be strongly reduced if, for a ${\in}$ N, $a^2{\in}N_c$ implies $a{\in}N_c$, where $N_c$ denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify all reduced and strongly reduced near-rings of order ${\leq}$ 7 using the description given in J. R. Clay [1].

A STUDY ON STRONGLY REDUCED AND REGULAR NEAR-RINGS

  • Cho, Yong-Uk
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.125-126
    • /
    • 2008
  • A near-ring N is called strongly reduced if, for a ${\epsilon}$ N, $a^2\;{\epsilon}\;N_c$ implies a ${\epsilon}\;N_c$, where $N_c$ denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify some reduced, and strongly reduced near-rings.

  • PDF

A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.199-206
    • /
    • 2003
  • Let N be a right near-ring. N is said to be strongly reduced if, for $a\inN$, $a^2 \in N_{c}$ implies $a\;\in\;N_{c}$, or equivalently, for $a\inN$ and any positive integer n, $a^{n} \in N_{c}$ implies $a\;\in\;N_{c}$, where $N_{c}$ denotes the constant part of N. We will show that strong reducedness is equivalent to condition (ⅱ) of Reddy and Murty's property $(^{\ast})$ (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61-64]), and that condition (ⅰ) of Reddy and Murty's property $(^{\ast})$ follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and ($P_{0}$)-near-rings.

  • PDF

MORPHIC PROPERTY OF A QUOTIENT RING OVER POLYNOMIAL RING

  • Long, Kai;Wang, Qichuan;Feng, Lianggui
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1433-1439
    • /
    • 2013
  • A ring R is called left morphic if $$R/Ra{\simeq_-}l(a)$$ for every $a{\in}R$. Equivalently, for every $a{\in}R$ there exists $b{\in}R$ such that $Ra=l(b)$ and $l(a)=Rb$. A ring R is called left quasi-morphic if there exist $b$ and $c$ in R such that $Ra=l(b)$ and $l(a)=Rc$ for every $a{\in}R$. A result of T.-K. Lee and Y. Zhou says that R is unit regular if and only if $$R[x]/(x^2){\simeq_-}R{\propto}R$$ is morphic. Motivated by this result, we investigate the morphic property of the ring $$S_n=^{def}R[x_1,x_2,{\cdots},x_n]/(\{x_ix_j\})$$, where $i,j{\in}\{1,2,{\cdots},n\}$. The morphic elements of $S_n$ are completely determined when R is strongly regular.

ON ϕ-(n, d) RINGS AND ϕ-n-COHERENT RINGS

  • Younes El Haddaoui;Hwankoo Kim;Najib Mahdou
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.623-642
    • /
    • 2024
  • This paper introduces and studies a generalization of (n, d)-rings introduced and studied by Costa in 1994 to rings with prime nilradical. Among other things, we establish that the ϕ-von Neumann regular rings are exactly either ϕ-(0, 0) or ϕ-(1, 0) rings and that the ϕ-Prüfer rings which are strongly ϕ-rings are the ϕ-(1, 1) rings. We then introduce a new class of rings generalizing the class of n-coherent rings to characterize the nonnil-coherent rings introduced and studied by Bacem and Benhissi.