• 제목/요약/키워드: strictly stationary sequence

검색결과 20건 처리시간 0.033초

A Functional Central Limit Theorem for the Multivariate Linear Process Generated by Negatively Associated Random Vectors

  • Kim, Tae-Sung;Seo, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제8권3호
    • /
    • pp.615-623
    • /
    • 2001
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form (no abstract. see full-text) where{ $Z_{t}$} is a sequence of strictly stationary m-dimensional negatively associated random vectors with E $Z_{t}$=O and E∥ $Z_{t}$$^2$<$\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (no abstract. see full-text) and (no abstract. see full-text).text).).

  • PDF

SELF-NORMALIZED WEAK LIMIT THEOREMS FOR A ø-MIXING SEQUENCE

  • Choi, Yong-Kab;Moon, Hee-Jin
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1139-1153
    • /
    • 2010
  • Let {$X_j,\;j\geq1$} be a strictly stationary $\phi$-mixing sequence of non-degenerate random variables with $EX_1$ = 0. In this paper, we establish a self-normalized weak invariance principle and a central limit theorem for the sequence {$X_j$} under the condition that L(x) := $EX_1^2I{|X_1|{\leq}x}$ is a slowly varying function at $\infty$, without any higher moment conditions.

A STRONG LAW OF LARGE NUMBERS FOR AANA RANDOM VARIABLES IN A HILBERT SPACE AND ITS APPLICATION

  • Ko, Mi-Hwa
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.91-99
    • /
    • 2010
  • In this paper we introduce the concept of asymptotically almost negatively associated random variables in a Hilbert space and obtain the strong law of large numbers for a strictly stationary asymptotically almost negatively associated sequence of H-valued random variables with zero means and finite second moments. As an application we prove a strong law of large numbers for a linear process generated by asymptotically almost negatively random variables in a Hilbert space with this result.

ON THE EXPONENTIAL INEQUALITY FOR NEGATIVE DEPENDENT SEQUENCE

  • Kim, Tae-Sung;Kim, Hyun-Chull
    • 대한수학회논문집
    • /
    • 제22권2호
    • /
    • pp.315-321
    • /
    • 2007
  • We show an exponential inequality for negatively associated and strictly stationary random variables replacing an uniform boundedness assumption by the existence of Laplace transforms. To obtain this result we use a truncation technique together with a block decomposition of the sums. We also identify a convergence rate for the strong law of large number.

A Weak Convergence for a Linear Process with Positive Dependent Sequences

  • Kim, Tae-Sung;Ryu, Dae-Hee;Lee, Il-Hyun
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.483-490
    • /
    • 2002
  • A weak convergence is obtained for a linear process of the form (equation omitted) where {$\varepsilon$$_{t}$ } is a strictly stationary sequence of associated random variables with E$\varepsilon$$_{t}$ = 0 and E$\varepsilon$$^{^2}$$_{t}$ < $\infty$ and {a $_{j}$ } is a sequence of real numbers with (equation omitted). We also apply this idea to the case of linearly positive quadrant dependent sequence.

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • 제17권1호
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa;Kim, Tae-Sung
    • 대한수학회논문집
    • /
    • 제23권1호
    • /
    • pp.133-140
    • /
    • 2008
  • Let {${\xi}_k,\;k\;{\in}\;{\mathbb{Z}}$} be a strictly stationary associated sequence of H-valued random variables with $E{\xi}_k\;=\;0$ and $E{\parallel}{\xi}_k{\parallel}^2\;<\;{\infty}$ and {$a_k,\;k\;{\in}\;{\mathbb{Z}}$} a sequence of linear operators such that ${\sum}_{j=-{\infty}}^{\infty}\;{\parallel}a_j{\parallel}_{L(H)}\;<\;{\infty}$. For a linear process $X_k\;=\;{\sum}_{j=-{\infty}}^{\infty}\;a_j{\xi}_{k-j}$ we derive that {$X_k} fulfills the functional central limit theorem.

PRECISE ASYMPTOTICS FOR THE MOMENT CONVERGENCE OF MOVING-AVERAGE PROCESS UNDER DEPENDENCE

  • Zang, Qing-Pei;Fu, Ke-Ang
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.585-592
    • /
    • 2010
  • Let {$\varepsilon_i:-{\infty}$$\infty$} be a strictly stationary sequence of linearly positive quadrant dependent random variables and $\sum\limits\frac_{i=-{\infty}}^{\infty}|a_i|$<$\infty$. In this paper, we prove the precise asymptotics in the law of iterated logarithm for the moment convergence of moving-average process of the form $X_k=\sum\limits\frac_{i=-{\infty}}^{\infty}a_{i+k}{\varepsilon}_i,k{\geq}1$

ON PRECISE ASYMPTOTICS IN THE LAW OF LARGE NUMBERS OF ASSOCIATED RANDOM VARIABLES

  • Baek, Jong-Il;Seo, Hye-Young;Lee, Gil-Hwan
    • 호남수학학술지
    • /
    • 제30권1호
    • /
    • pp.9-20
    • /
    • 2008
  • Let ${X_i{\mid}i{\geq}1}$ be a strictly stationary sequence of associated random variables with mean zero and let ${\sigma}^2=EX_1^2+2\sum\limits_{j=2}^\infty{EX_1}{X_j}$ with 0 < ${\sigma}^2$ < ${\infty}$. Set $S_n={\sum\limits^n_{i=1}^\{X_i}$, the precise asymptotics for ${\varepsilon}^{{\frac{2(r-p)}{2-p}}-1}\sum\limits_{n{\geq}1}n^{{\frac{r}{p}}-{\frac{1}{p}}+{\frac{1}{2}}}P({\mid}S_n{\mid}{\geq}{\varepsilon}n^{{\frac{1}{p}}})$,${\varepsilon}^2\sum\limits_{n{\geq}3}{\frac{1}{nlogn}}p({\mid}Sn{\mid}{\geq}{\varepsilon\sqrt{nloglogn}})$ and ${\varepsilon}^{2{\delta}+2}\sum\limits_{n{\geq}1}{\frac{(loglogn)^{\delta}}{nlogn}}p({\mid}S_n{\mid}{\geq}{\varepsilon\sqrt{nloglogn}})$ as ${\varepsilon}{\searrow}0$ are established under the suitable conditions.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.