• Title/Summary/Keyword: stress-induced method

Search Result 657, Processing Time 0.031 seconds

Studies on the effect of Kamikuibitang on the Gastric Ulcer in Rats (가미귀비탕(加味歸脾湯)이 흰쥐의 위궤양(胃潰瘍)에 미치는 영향(影響))

  • Baek, Dong-Jin
    • The Journal of Korean Medicine
    • /
    • v.17 no.2 s.32
    • /
    • pp.277-290
    • /
    • 1996
  • This study was aimed to evaluate the anti-pain effect of Kamikuibitang in acetic acid method and the anti-ulceration effect of Kamikuibitang in indomethacin, aspirin and immobilization stress method in rats. The results were follows; 1. The anti-pain effects of Kuibitang and Kamikuibitang were decreased compared with those of control group. 2. In indomethacin and aspirin method, the anti-ulcerative effects of experimental groups were shown compared with those of control group. 3. In immobilization stress method, the anti-ulcerative effect of experimental groups was significantly shown compared with that of control group. 4. The serum gastrin levels of Kuibitang groups showed very significant decrease in indomethacin-induced and immobilization stress-induced ulcers. The serum gastrin levels of Kamikuibitang groups showed very significant decrease in indomethacin-induced, aspirin- induced and immobilization stress-induced ulcers. 5. The serum $V_{B12}$ levels of Kuibitang groups showed very significant increase in both indomethacin-induced and immobilization stress-induced ulcers. The serum $V_{B12}$ levels of Kamikuibitang groups showed significant increase in aspirin-induced and immobilization stress-induced ulcers whereas very significant increase in indomethacin-induced ulcer. According to the above results, it was concluded that Kamikuibitang had very significant anti-ulceration effect as well as anti-pain effect on gastric ulcer in rats.

  • PDF

One-dimensional Bi-Te core/shell structure grown by a stress-induced method for the enhanced thermoelectric properties

  • Kang, Joo-Hoon;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.47-47
    • /
    • 2009
  • The formation of variable one-dimensional structures including core/shell structure is of particular significance with respect to potential applications for thermoelectric devices with the enhanced figure of merit ($ZT=S2{\sigma}T/{\kappa}$). We report the fabrication of Bi-Te core/shell nanowire based on a novel stress induced method. Fig. 1 schematically shows the nanowire fabrication process. Bi nanowires are grown on the Si substrate by the stress-induced method, and then Te is evaporated on the Bi nanowires. Fig. 2 is a transmission electron microscopy image clearly showing a core/shell structure for which effective phonon scattering and quantum confinement effect are expected. Electrical conductivity of the core/shell nanowire was measured at the temperatures from 4K to 300K, respectively. Our results demonstrate that Bi-Te core/shell nanowire can be grown successfully by the stress-induced method. Based on the result of electrical transport measurement and characteristic morphology of rough surface, Seebeck coefficient and thermal conductivity of Bi-Te core/shell nanowires are presented.

  • PDF

Stress Analysis of Steam Generator Row-1 Tubes (증기발생기 제1열 전열관의 응력 해석)

  • Kim, Woo-Gon;Ryu, Woo-Seog;Lee, Ho-Jin;Kim, Sung-Chung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.25-30
    • /
    • 2000
  • Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the Internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent lesions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 MPa in axial direction at ${\psi}=0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at Position of${\psi}=90^{\circ}$, i.e., at apex region. In tube-to-tubesheet fouling methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the. transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa.

  • PDF

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Residual Stress in U-Bending Deformations and Expansion Joints of Heat Exchanger Tubes (전열관의 굽힘 및 확관접합 잔류응력)

  • Jang, Jin-Seong;Bae, Gang-Guk;Kim, U-Gon;Kim, Seon-Jae;Guk, Il-Hyeon;Kim, Seong-Cheong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.279-289
    • /
    • 2000
  • Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's row-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319 MPa in axial direction at the position of $\psi$ = $0^{\circ}$. Tensile residual stresses(+) of $\sigma_{zz}$ = 45 MPa and $\sigma_{\theta\theta}$ = 25 MPa were introduced in the intrados surface at the position of $\psi$ = $0^{\circ}$. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of $\psi$ = $90^{\circ}$, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction.

Analysis of Chemically and Thermally Induced Residual Stresses in Polymeric Thin Film

  • Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • This paper deals with the residual stresses developed in an epoxy film deposited on Si wafer. First, chemically induced residual stresses due to the volumetric shrinkage in cross-linking resins during polymerization are treated. The curvature measurement method is employed to investigate the residual stresses. Then, thermally induced stresses are investigated along the interface between the epoxy film and Si wafer. The boundary element method is employed to investigate the whole stresses in the film. The singular stress is observed near the interface corner. Such residual stresses are large enough to initiate interface delamination to relieve the residual stresses.

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I) (선체 박판구조의 용접변형 제어에 관한 연구(I))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Application of Tensioning Method to Deformation Control of Thin Plate Fillet Weld (박판 필릿용접시 변형제어를 위한 장력법 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • As it has been well appreciated from the viewpoint of efficiency, The weld-induced deformation control is one of the most important issues in marine structure production. In the case of thin plate block, weld-induced deformation is more serious than in the case of relatively thick plate block. The heat affect zone of thin plates is wider than that of thick plates with the same heat input. Among weld-induced deformations, the buckling deformation by the shrinkage and residual stress in the weld line direction is one of the most serious deformation types. This paper is concerned with controlling buckling deformations for the thin plate fillet welds, by using the tensioning method. A numerical analysis was carried out to illustrate several dominant buckling modes due to compressive residual stress in the fillet weldsof thin plates. Then, weld tests were carried out for 20 specimens with varying plate thickness, and with different magnitudes and directions for the tension load. The results graphically represented to shaw the effect of the tensioning method in reducing the weld-induced deformation. From the present findings, it was seen that the tensioning method is a useful way to control weld-induced deformations in the fillet welds of thin plates.

The Effect of Shot Peening on the Bending Strength of Carburized Spur Gear Teeth Based on Fracture Mechanics (파괴역학을 기초로 한 침탄치차의 굽힘강도에 미치는 쇼트피닝(Shot Peening)의 효과에 관한 연구)

  • S.K.Lyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.512-521
    • /
    • 1997
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a car¬burized gear tooth and its application to the fatigue crack propagation problem. The residual stress is estimated based on the assumption that the main cause of residual stress is the volume difference between the case and core due to martensitic transformation in cooling, and the influ¬ence of both the reduction of retained austenite and the strain in the surface layer induced by shot peening are considered. The reliability of the method is examined by comparison with stresses measured by the X-ray diffraction method. The stresses intensity factors are computed by the influence function method and the reduction of the factor due to the residual stress is demonstrat¬ed and discussed based on the fracture mechanics.

  • PDF

On the Fillet Weld-Induced Deformation Control by Applying the Tensioning Method (장력법을 적용한 필릿용접변형 제어에 관한 연구)

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.38-43
    • /
    • 2009
  • As it has been well appreciated, the weld-induced deformation control is one of the most important issues from view point of efficiency in ship production. The weld-induced deformation is more serious in the case of thin plate block than in the case of relatively thick plate block, since, for example, heat affect zone of thin plates is wider than that of thick plates for the same heat input. Among weld-induced deformation, buckling deformation due to shrinkage and residual stress in weld line direction is one of the most serious deformation type. This paper is concerned with the controling the buckling deformation of thin plate fillet weld by applying the tensioning method. Weld experiments have been carried out for specimens with varying the magnitude and direction of tension load. The results are graphically represented to show the effect of tensioning method upon reducing the weld-induced deformation. From the present findings, its has been seen that tensioning method is one of the useful ways to control the weld-induced deformation of fillet weld of thin plates.