• Title/Summary/Keyword: stress-dependent

Search Result 2,148, Processing Time 0.032 seconds

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

  • So, Mi Jung;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.129-135
    • /
    • 2014
  • The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions ($O_2{^-}$), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, $O_2{^-}$, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide ($H_2O_2$)-induced SIPS. Phloroglucinol treatment attenuated $H_2O_2$-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS.

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

  • Maeng, Hyo Jin;Song, Jae-Hwi;Kim, Goon-Tae;Song, Yoo-Jeong;Lee, Kangpa;Kim, Jae-Young;Park, Tae-Sik
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a subunit of serine palmitoyltransferase, was overexpressed by adenovirus. Adenoviral overexpression of SPTLC2 (AdSPTLC2) decreased cell viability of HEK293 and HepG2 cells. In addition, AdSPTLC2 induced apoptosis via the caspase-dependent apoptotic pathway and elevated cellular ceramide, sphingoid bases, and dihydroceramide. However, overexpression of SPTLC2 did not induce ER stress. Collectively, celecoxib activates de novo sphingolipid biosynthesis and the combined effects of elevated ceramide and transcriptional activation of ER stress induce apoptosis. However, activation of de novo sphingolipid biosynthesis does not activate ER stress in hepatoma cells and is distinct from the celecoxib-mediated activation of ER stress.

Combined strain gradient and concrete strength effects on flexural strength and ductility design of RC columns

  • Chen, M.T.;Ho, J.C.M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.607-642
    • /
    • 2015
  • The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) columns. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress developed in flexure. However, no quantitative model was available to evaluate the strain gradient effect on concrete under flexure. Previously, the authors have conducted experimental studies to investigate the strain gradient effect on maximum concrete stress and respective strain and developed two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. As a continued study, the authors herein will extend the investigation of strain gradient effects on flexural strength and ductility of RC columns to concrete strength up to 100 MPa by employing the strain-gradient-dependent concrete stress-strain curve using nonlinear moment-curvature analysis. It was evident from the results that both the flexural strength and ductility of RC columns are improved under strain gradient effect. Lastly, for practical engineering design purpose, a new equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength was proposed and validated. Design formulas and charts have also been presented for flexural strength and ductility of RC columns.

Viscoplastic Constitutive Equations for Ratchetting Behavior (라체팅 거동에 대한 점소성 구성방정식)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.466-472
    • /
    • 2005
  • Inelastic deformation behavior of metals and alloys is considered rate dependent. Uniaxial ratcheting experiments performed by Ruggles and Krempl, and Hassan and Kyriakides exhibited that higher mean stress for a fixed stress amplitude resulted in higher ratchet strain within a rate independent framework and higher stress rate resulted in lower ratchet strain, respectively. These phenomena are qualitatively investigated by numerical experiments through unified viscoplasticity theory. The theory does not separate rate-independent plasticity and rate-dependent creep, and thus uses only one inelastic strain to describe inelastic deformation processes with the concept of the yield surface. The growth law for the kinematic stress, which is a tensor valued state variable of the constitutive equations, is modified to predict the linear evolution of long-term ratchet strain.

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel (SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移)

  • 유헌일;주원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.539-547
    • /
    • 1985
  • The low-cycle fatigue crack growth behavior of SUS 304 Stainless steel was investigated at 650.deg. C by the nonlinear fracture mechanics. Crack Propagation can be separated in to cycle-dependent and time-dependent, the former is correlated with .DELTA. $J_{f}$ , J-intergral range and the latter is correlated with J', modified J integral. Transition from cycle-dependent to time-dependent crack growth was successfully predicted using the .betha. hypothesis, which was proposed by the authors on the basis of an analysis on the interaction of elastic and creep strain. To investigate the reliability of .betha.-hypothesis, experimenting by the change of stress-level, stress rate and frequency, following conclusions were obtained. (1) High temperature fatigue crack propagation was separated into cycle-dependent and time-dependent. (2) Transition of crack propagation was predicted by .DELTA. $J_{c}$/.DELTA.$_{f}$ or .betha. (3) Lower limit in cycle-dependent crack propagation was obtained..