• Title/Summary/Keyword: stress transfer

Search Result 1,112, Processing Time 0.022 seconds

Design and Application of Forced Cooling System in Steam Turbine (증기터빈 강제냉각 장치의 설계 및 적용)

  • 김효진;류승우;강용호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.25-32
    • /
    • 1998
  • The forced cooling system is designed to shorten the overhaul time of steam turbine, which is important in view of economic concern of utility companies, Forced cooling of the hot turbine is achieved by suction of air flow into the turbine after the turbine shuts down. The heat transfer process by suction of air flow can cause thermal stress due to the thermal gradients. In this paper, the analysis of heat transfer is performed to calculate the air flow rate. Based on the prediction of cyclic fatigue damage and the experience, the cooling equipment is designed for shortening the cooling time of steam turbine.

  • PDF

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

Force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges

  • Hossain, Tanvir;Okeil, Ayman M.
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.109-125
    • /
    • 2014
  • The force transfer mechanism in positive moment continuity details for prestressed concrete girder bridges is investigated in this paper using a three-dimensional detailed finite element model. Positive moment reinforcement in the form of hairpin bars as recommended by the National Cooperative Highway Research Program Report No 519 is incorporated in the model. The cold construction joint that develops at the interface between girder ends and continuity diaphragms is also simulated via contact elements. The model is then subjected to the positive moment and corresponding shear forces that would develop over the service life of the bridge. The stress distribution in the continuity diaphragm and the axial force distribution in the hairpin bars are presented. It was found that due to the asymmetric configuration of the hairpin bars, asymmetric stress distribution develops at the continuity diaphragm, which can be exacerbated by other asymmetric factors such as skewed bridge configurations. It was also observed that when the joint is subjected to a positive moment, the tensile force is transferred from the girder end to the continuity diaphragm only through the hairpin bars due to the lack of contact between the both members at the construction joint. As a result, the stress distribution at girder ends was found to be concentrated around the hairpin bars influence area, rather than be resisted by the entire girder composite section. Finally, the results are used to develop an approach for estimating the cracking moment capacity at girder ends based on a proposed effective moment of inertia.

Finite Element Stress Analysis in Supporting Bone according to Crest Module Shape of Fixture in Internal Connection System (내측연결 시스템에서 임플란트 고정체의 경부 형태에 따른 지지골에서의 유한요소 응력분석)

  • Park, Young-Nam;Kim, Hee-Jung;Oh, Sang-Ho;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.55-74
    • /
    • 2006
  • The external contour of an implant can have significant effects on the load transfer characteristics and may result in different bone failure rates for different implant system. The purpose of this study was to investigate the effects of crest module shape and occlusal load direction on bone failure modes of five commercially available dental implant systems. Five different implant systems with internal connection; ITI (Model 1), Astra (Model 2), Bicon (Model 3), Friadent (Model 4), and Paragon (Model 5), comparable in size, but different in thread profile and cest module shapes, were compared using the finite element method. Conclusively, in the internal connection system of the implant-abutment connection methods, the stress-induced pattern at the supporting bone according to the abutment connection form had differenence among them, and implants with narrowing crestal module cross-sections at the top of the cortical bone created more favorable load transfer characteristics in this region. But it is considered that the future study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Thrust Measurement in a Impulse Facility (충격파 시험장치를 이용한 추력 측정)

  • Jin, Sangwook;Hwang, Kiyoung;Park, Dongchang;Min, Seongki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.310-319
    • /
    • 2017
  • This paper introduces the method how to measure the thrust in impulse facility. In a Facility having such a short duration time of steady flow, there's no time to reach a steady state of the forces acting on model so that the test model vibrates until the end of the flow. The forces exerted on an engine exist with vibration so that the usual force balance can not be used. SWFB(Stress Wave Force Balance) technique is utilized in a shock tunnel to get the thrust. As an example, a model force balance has been calculated its strain against impulse force by using FEM(Finite Element Method). A transfer function between the impulse force and strain has been obtained by the way of de-convolution.

  • PDF

Effective Positive Bias Recovery for Negative Bias Stressed sol-gel IGZO Thin-film Transistors (음 바이어스 스트레스를 받은 졸-겔 IGZO 박막 트랜지스터를 위한 효과적 양 바이어스 회복)

  • Kim, Do-Kyung;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.329-333
    • /
    • 2019
  • Solution-processed oxide thin-film transistors (TFTs) have garnered great attention, owing to their many advantages, such as low-cost, large area available for fabrication, mechanical flexibility, and optical transparency. Negative bias stress (NBS)-induced instability of sol-gel IGZO TFTs is one of the biggest concerns arising in practical applications. Thus, understanding the bias stress effect on the electrical properties of sol-gel IGZO TFTs and proposing an effective recovery method for negative bias stressed TFTs is required. In this study, we investigated the variation of transfer characteristics and the corresponding electrical parameters of sol-gel IGZO TFTs caused by NBS and positive bias recovery (PBR). Furthermore, we proposed an effective PBR method for the recovery of negative bias stressed sol-gel IGZO TFTs. The threshold voltage and field-effect mobility were affected by NBS and PBR, while current on/off ratio and sub-threshold swing were not significantly affected. The transfer characteristic of negative bias stressed IGZO TFTs increased in the positive direction after applying PBR with a negative drain voltage, compared to PBR with a positive drain voltage or a drain voltage of 0 V. These results are expected to contribute to the reduction of recovery time of negative bias stressed sol-gel IGZO TFTs.

Time dependent heat transfer of proliferation resistant plutonium

  • Lloyd, Cody;Hadimani, Ravi;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.510-517
    • /
    • 2019
  • Increasing proliferation resistance of plutonium by way of increased $^{238}Pu$ content is of interest to the nuclear nonproliferation and international safeguards community. Considering the high alpha decay heat of $^{238}Pu$, increasing the isotopic fraction leads to a noticeably higher amount of heat generation within the plutonium. High heat generation is especially unattractive in the scenario of weaponization. Upon weaponization of the plutonium, the plutonium may generate enough heat to elevate the temperature in the high explosives to above its self-explosion temperature, rendering the weapon useless. In addition, elevated temperatures will cause thermal expansion in the components of a nuclear explosive device that may produce thermal stresses high enough to produce failure in the materials, reducing the effectiveness of the weapon. Understanding the technical limit of $^{238}Pu$ required to reduce the possibility of weaponization is key to reducing the current limit on safeguarded plutonium (greater than 80 at. % $^{238}Pu$). The plutonium vector evaluated in this study was found by simulating public information on Lightbridge's fuel design for pressurized water reactors. This study explores the temperature profile and maximum stress within a simple (first generation design) hypothetical nuclear explosive device of four unique scenarios over time. Analyzing the transient development of both the temperature profile and maximum stress not only establishes a technical limit on the $^{238}Pu$ content, but also establishes a time limit for which each scenario would be useable.