DOI QR코드

DOI QR Code

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M. (DEPARTMENT OF MATHEMATICS, V. R. SIDDHARTHA ENGINEERING COLLEGE) ;
  • BABU, R. VASU (DEPARTMENT OF MATHEMATICS, SHRI VISHNU ENGINEERING COLLEGE) ;
  • SHAW, S.K. MOHIDDIN (DEPARTMENT OF MATHEMATICS, NARASARAOPTA ENGINEERING COLLEGE)
  • Received : 2017.05.31
  • Accepted : 2017.12.09
  • Published : 2017.12.25

Abstract

The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.

References

  1. C. L. M. H. Navier: Memoire Surles du Movement des, Mem Acad. Sci. Inst. France, 1(1823), pp. 414-416.
  2. M. J.Martin and I.D. Boyd: Blasius boundary layer solution with slip flow conditions, Rarefied Gas Dynamics: 22nd International Symposium, Sydney, Australia, July 9-14, T. J. Bartel and M. A. Gallis, eds., American Institute of Physics, AIP Conf. Proc., 585(2001), pp. 518-523.
  3. H. I. Anderson: Slip Flow Past a Stretching Surface, Acta Mech., 158(2002), pp. 121-125. https://doi.org/10.1007/BF01463174
  4. T. Fang and C. F. Lee: A moving-wall boundary layer flow of a slightly rarefied gas free stream over a moving flat plate, Appl. Math. Lett., 18(2005), pp. 487-495. https://doi.org/10.1016/j.aml.2004.08.006
  5. Yu S and Ameel T. A: Slip-flow heat transfer in rectangular microchannels, Int. J. Heat Mass Transfer, 44 (2002) pp. 4225-4234.
  6. F. Soltani and U. Yilmazer: Slip velocity and slip layer thickness in flow of concentrated suspensions, J. Appl. Polym. Sci, 70 (1998), pp. 515-522. https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-#
  7. N. K. Vedantam and R. N. Parthasarathy: Effects of slip on the flow characteristics of laminar flat plate boundary-layer, Proceedings of ASME Fluids Engineering Summer Meeting, Miami, FL, 2006, pp. 1551-1560.
  8. M.J. Martin and I. D. Boyd: Momentum and heat transfer in a laminar boundary layer with slip flow, J. Thermophys. Heat Transfer, 20(2006), pp. 710-719. https://doi.org/10.2514/1.22968
  9. M, Venkateswarlu and P. Padma: Unsteady MHD free convective heat and mass transfer in a boundary layer flow past a vertical permeable plate with thermal radiation and chemical reaction, Procedia Engineering , 127(2015), pp. 791-799. https://doi.org/10.1016/j.proeng.2015.11.414
  10. K. Watanebe, Yanuar and H. Mizunuma: Slip of Newtonian fluids at solid boundary, JSME Int. J. Ser. B, 41(1998), pp. 525-529.
  11. E. Ruckenstein and P. Rajora: On the no-slip boundary conditions of hydrodynamics, J. Colloid Interface Sci, 96 (1983), pp. 488-491. https://doi.org/10.1016/0021-9797(83)90050-4
  12. K. Cao and J. Baker: Slip Effects on mixed convective flow and heat transfer from a vertical plate, Int. J. Heat Mass Transfer, 52(2009), pp. 3829-3841. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.013
  13. A. Aziz: Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition, Commun. Nonlinear Sci. Numer. Simul., 15(2010), pp. 573-580. https://doi.org/10.1016/j.cnsns.2009.04.026
  14. M. Venkateswarlu and D. Venkata Lakshmi: Slip velocity distribution on MHD oscillatory heat and mass transfer flow of a viscous fluid in a parallel plate channel, GANIT J.Bangladesh Math. Soc, 36(2016), pp. 93-114.
  15. K. Bhattacharyya, Mukhopadhyay and G. C. Layek: MHD boundary layer slip flow and heat transfer over a flat plate, Chinese Phys. Lett., 28(2011), p. 024701. https://doi.org/10.1088/0256-307X/28/2/024701
  16. M. J. Martin and I. D. Boyd: Falkner-Skan flow over a wedge with slip boundary conditions, J. Thermophys. Heat transfer, 24(2010), pp. 263-270. https://doi.org/10.2514/1.43316
  17. M.M. Rahman and I. A. Eltayeb: Convective slip flow of rarefied fluids over a wedge with thermal jump and variable transport properties, Int. J. Therm. Sci., 50(2011), pp. 468-479. https://doi.org/10.1016/j.ijthermalsci.2010.10.020
  18. Jr. W. Marques, G. M. Kremer and F. M. Shapiro: Coutte flow with slip and jump boundary conditions, Continumm Mech. Thermodynam, 12 (2000), pp.379-386. https://doi.org/10.1007/s001610050143
  19. M, Turkyilmazoglu: Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface, ASME J. Heat Transfer, 134(2012), p. 071701. https://doi.org/10.1115/1.4006165
  20. U. N. Das, R. K. Deka, V.M. Soundalgekar: Effect of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction, Forschung Ingenieurwesen-Engineering research Bd, 60(1994), pp.:284-287. https://doi.org/10.1007/BF02601318
  21. J. Manjula , P. Padma , M. Gnaneswara Reddy and M. Venakateswarlu : Influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface, Procedia Engineering, 127 (2015), pp. 1315-1322. https://doi.org/10.1016/j.proeng.2015.11.489
  22. R. Muthucumarswamy, P. Ganesan: Diffusion and first-order chemical reaction on impulsively started infinite vertical plate with variable temperature, Int. J . Therm Sci, 41( 2002), pp.475-479. https://doi.org/10.1016/S1290-0729(02)01340-6
  23. K. V. Prasad, S. Abel and P. S. Datti: Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet, Int. J. Non-Linear Mech, 38(2003), pp. 651-657. https://doi.org/10.1016/S0020-7462(01)00122-6
  24. M. Venkateswarlu , G. V. Ramana Reddy and D. V. Lakshmi: Diffusion-thermo effects on MHD flow past an infinite vertical porous plate in the presence of radiation and chemical reaction, International Journal of Mathematical Archive, 4(2013), pp. 39-51.
  25. M. Venkateswarlu, G. V. Ramana Reddy and D. V. Lakshmi: Effects of chemical reaction and heat generation on MHD boundary layer flow of a moving vertical plate with suction and dissipation, Engineering International, 1(2013), pp.27-38, 2013.
  26. F. T. Akyildiz, H. Bellout and K. Vajravelu:Diffusion of chemically reactive species in a porous medium over a stretching sheet, J. Math Anal Appl., 320(2006), pp. 322-339. https://doi.org/10.1016/j.jmaa.2005.06.095
  27. A. Y. Ghaly and M. A. Seddeek: Chebyshev finite difference method for the effect of chemical reaction, heat and mass transfer on laminar flow along a semiinfinite horizontal plate with temperature dependent viscosity, Choas Solitons Fractals ,19( 2004), pp. 61-70. https://doi.org/10.1016/S0960-0779(03)00069-9
  28. E. M. Sparrow and R. D. Cess: Temperature dependent heat sources or sinks in a stagnation point flow, Appl. Sci. Res., 10(1961), pp. 185-197. https://doi.org/10.1007/BF00411912
  29. M. Venkateswarlu, D. Venkata Lakshmi and K. Nagamalleswara Rao: Soret, hall current, rotation, chemical reaction and thermal radiation effects on unsteady MHD heat and mass transfer natural convection flow past an accelerated vertical plate, J. Korean Soc. Ind. Appl. Math., 20(2016), pp. 203 -224.
  30. M. Venkateswarlu, G. V. Ramana Reddy and D. V. Lakshmi: Radiation effects on MHD boundary layer flow of liquid metal over a porous stretching surface in porous medium with heat generation, J. Korean Soc. Ind. Appl. Math., 19(2015), pp.83- 102.
  31. M. Venkateswarlu, G. V. Ramana Reddy and D. V. Lakshmi: Thermal diffusion and radiation effects on unsteady MHD free convection heat and mass transfer flow past a linearly accelerated vertical porous plate with variable temperature and mass diffusion, J. Korean Soc. Ind. Appl. Math., 18(2014), pp. 257-268.
  32. A. Ishak: Mixed convection boundary layer flow over a horizontal plate with thermal radiation, Heat and Mass Transfer, 46 (2009), pp.147-151. https://doi.org/10.1007/s00231-009-0552-3
  33. M. Venkateswarlu, D. Venkata Lakshmi and G. Darmaiah: Influence of slip condition on radiative MHD flow of a viscous fluid in a parallel porous plate channel in presence of heat absorption and chemical reaction , J. Korean Soc. Ind. Appl. Math., 20(2016), pp. 333 -354.
  34. E. Magyari and A. Pantokratoras: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows, Int. Commun. Heat and Mass Transfer, 38(2011), pp. 554-556. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.006
  35. M. Venkateswarlu, G. Venkata Ramana Reddy and D. Venkata Lakshmi: Radiation and chemical reaction effects on MHD flow past an oscillating vertical porous plate with constant heat flux, Proceedings of International Conference on Mathematical Sciences, ISBN-978-93-5107-261-4, 2014, pp.323-327.
  36. S. O. Adesanya and O. D.... Makinde: MHD oscillatory slip flow and heat transfer in a channel filled with porous media, U.P.B. Sci. Bull., Series A, 76(2014), pp.197-204.
  37. N. Siva Kumar, Rushi Kumar and A. G. Vijaya Kumar: Thermal diffusion and chemical reaction effects on unsteady flow past a vertical porous plate with heat source dependent in slip flow regime, Journal of Naval Architecture and Marine Engineering, 13(2016), pp. 51-62. https://doi.org/10.3329/jname.v13i1.20773
  38. M. Venkateswarlu and D. Venkata Lakshmi: Soret and chemical reaction effects on the radiative MHD flow from an infinite vertical plate, J. Korean Soc. Ind. Appl. Math., 21(2017), pp. 39-61.