Finite Element Stress Analysis in Supporting Bone according to Crest Module Shape of Fixture in Internal Connection System

내측연결 시스템에서 임플란트 고정체의 경부 형태에 따른 지지골에서의 유한요소 응력분석

  • Park, Young-Nam (Dept of Prosthodontics, College of Dentistry, Chosun University) ;
  • Kim, Hee-Jung (Dept of Prosthodontics, College of Dentistry, Chosun University) ;
  • Oh, Sang-Ho (Dept of Prosthodontics, College of Dentistry, Chosun University) ;
  • Chung, Chae-Heon (Dept of Prosthodontics, College of Dentistry, Chosun University)
  • 박영남 (조선대학교 치과대학 보철학교실) ;
  • 김희중 (조선대학교 치과대학 치과보철학교실) ;
  • 오상호 (조선대학교 치과대학 치과보철학교실) ;
  • 정재헌 (조선대학교 치과대학 치과보철학교실)
  • Published : 2006.03.30

Abstract

The external contour of an implant can have significant effects on the load transfer characteristics and may result in different bone failure rates for different implant system. The purpose of this study was to investigate the effects of crest module shape and occlusal load direction on bone failure modes of five commercially available dental implant systems. Five different implant systems with internal connection; ITI (Model 1), Astra (Model 2), Bicon (Model 3), Friadent (Model 4), and Paragon (Model 5), comparable in size, but different in thread profile and cest module shapes, were compared using the finite element method. Conclusively, in the internal connection system of the implant-abutment connection methods, the stress-induced pattern at the supporting bone according to the abutment connection form had differenence among them, and implants with narrowing crestal module cross-sections at the top of the cortical bone created more favorable load transfer characteristics in this region. But it is considered that the future study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Keywords

References

  1. Adell R, Lekholm U, Rockler B, Branemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures(1). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg. 1986; 15: 39-52 https://doi.org/10.1016/S0300-9785(86)80010-2
  2. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995; 73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  3. Barbier L, Vander SJ , Krzesinski G, Shepers E, Van Der Perre G. Finite element analysis of non axial vs. axial loading of oral implants in the mandible of dog. J Oral Rehabil 1998;25:847-858 https://doi.org/10.1046/j.1365-2842.1998.00318.x
  4. Beat R. Mechanics of the implant-abutment connection. An 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000; 15: 519-526
  5. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characte- ristics of five implant in compact bone at different load levels by finite element analysis. J Prosthet Dent 2004; 92:523-530 https://doi.org/10.1016/j.prosdent.2004.07.024
  6. Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 2000; 15: 15-46
  7. Chung KM, Chung CH, Jeong SM. Finite element analysis of implant prostheis according to platform width of fixture. J Korean Acad Prosthodont 2003;41:674-688
  8. Clelland, N.L., Lee, J.K., Bimbenet, O.C., Gilat, A.. Use of an axisym- metric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 1993; 2:183-189 https://doi.org/10.1111/j.1532-849X.1993.tb00405.x
  9. Duyck J, Ronold HJ, Van Oosterwyck H, Naert I, Vander Sioten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001;12:207-218 https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  10. Hansson S. The implant neck: smooth or provided with retention elements. Clin Oral Imp Rec 1999;10:394-405 https://doi.org/10.1034/j.1600-0501.1999.100506.x
  11. Haraldson T, Zarb GA. A 10-year follow-up study of the masticatory system after treatment with osseointegrated implant bridges. Scand J Dent Rec 1988; 96:243-252
  12. Holmes DC, Grigsby WR, Goel VK, Keller JC Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: A finite element stress analysis. Int J Oral Maxillofac Implants 1992; 7:450-458
  13. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using ftnite element analysis-a two-dimentional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998; 24:80-88 https://doi.org/10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
  14. Im TW, Cho IH, Lim JH, Lim HS. Fatigue strength of dental implants with different types of connection between ftxture and abutment cylinder. J Korean Acad Stomatog Function & Occlu 2002; 18:1-19
  15. Jemt T, et al. Osseointegrated implants for single tooth replacement. A 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991; 6:29-36
  16. Kim NH, Chung CH, Son MK, Back DH. A study on the ftt of the implant- abutment-screw interface. J Korean Acad Prosthodont 2003; 41:503-518
  17. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimentional finite element analysis. Clin Oral Implants Res 2004; 15:401-412 https://doi.org/10.1111/j.1600-0501.2004.01022.x
  18. Levine RA, et al. A multicenter retrospective analysis of ITI implant system used for single-tooth replacements: Preliminary results at six or more months of loading. Int J Oral Maxillofacial Implants 1997; 12: 237-242
  19. Lum LB. A biomechanical rationale for the use of short implants. J. Oral Implantol 1991; 17:126-131
  20. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: An analysis using statics. Part one: Horizontal loading. J Oral Implantol 1992; 18:343-348
  21. Matsushita Y, Kithoh M, Mizuta K, Ikeda H, Suetsugu T. Two- dimentional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990; 16:6-11
  22. Misch CE, Bidez MW. A scientific rationale for dental implant design. In:Misch CE, editor. Contemporary implant dentistry. 2nd ed. St. Louis.Mosby; 1999. p. 329-343
  23. Morimoto K, Kihara A, Takeshita F, Suetsugu T. An experimental study on the tissue compatibility of the titanium blade-vent implant coated with HAP-alumina in the semi-functional state. J Oral Implantol 1987; 13:387-401
  24. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res 1997; 8:290-298 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  25. Norton MR. Assessment of cold welding properties of internal conical interface two commercially available implant system. J Prosthet Dent 1999; 81:159-166 https://doi.org/10.1016/S0022-3913(99)70243-X
  26. Norton M. In vitro evaluation of the strength of the conical implant- to- abutment joint in two commercially available implant systems. J Prosthet Dent 2000; 83:567-571 https://doi.org/10.1016/S0022-3913(00)70016-3
  27. Patra AK, DePaolo JM, D'Souza KS, DeTolla D, Meenaghan MA. Guidlines for analysis and redesign of dental implants. Implant Dent 1998; 7:355- 368 https://doi.org/10.1097/00008505-199804000-00007
  28. Rangert B, Jemt T, Jomeus L. Forces and moments on Branemark implants. Int J Oral Maxillofac Implants 1989; 4:241-247
  29. Rangert B, Krogh PHJ, Langer B, van Roekel NB. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995; 10:326-334
  30. Rangert B, Enouard F, Amoux JP, Sarment DP. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants 1997; 12:360-370
  31. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implant 1989;4:333-340
  32. Sutter F, et al. The new concept of ITI hollow-cylinder and hollow- screw implants : Part 1. Engineering and design. Int J Oral Maxillofac Implant 1988; 3:161-172
  33. Sutter F, Webber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Perodont Rest Dent 1993; 13:409-431
  34. Weinberg LA. Force distribution in splinted anterior teeth. Oral Surg Oral Moo Oral Pathol 1957;10:484-494, 1957 https://doi.org/10.1016/0030-4220(57)90007-5
  35. Weinberg LA. Force distribution in splinted posterior teeth. Oral Surg Oral Med Oral Pathol 1957;10:1268-1276 https://doi.org/10.1016/S0030-4220(57)80025-5
  36. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993; 8:19-31