• Title/Summary/Keyword: stress release

Search Result 543, Processing Time 0.029 seconds

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11b
    • /
    • pp.1171-1177
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over-or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Metallothioneins and oxidative stress

  • Beattie, John H.;Trayhurn, Paul
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.11a
    • /
    • pp.73-82
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (U) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Stress, Inflammation and Neurogenesis in Major Depression (주요우울증에서 스트레스, 염증반응, 신경조직발생)

  • Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2011
  • Stress, a risk factor of major depression induces cytokine mediated inflammation and decreased neurogenesis. In patients with major depression, significant increases of pro-inflammatory cytokines have been consistently reported. The pro-inflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release glucocorticoids. In the brain, microglia and play a role of immune activation in response to stress. Increased pro-inflammatory cytokine play a role in restricting neurogenesis in the brain. Although neurogenesis may not be essential for the development of depression, it may be required for clinically effective antidepressant treatment. Hence, stimulation of neurogenesis is regarded as a promising strategy for new antidepressant targets. This review introduces changes in neurotransmitter, cytokine and neurogenesis in major depression and explores the possible relationship between pro-inflammatory cytokines and neurogenesis related to stress in major depression.

Study on the Verification of Healing Effect through Brain and Pulse Wave Analyses before and after Forest Walking (산림 산책 전후 뇌파 및 맥파 분석을 통한 치유효과 검증 연구)

  • Min-Su Kim;Jung-Hun Yeum
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.249-256
    • /
    • 2024
  • This study aimed to verify the healing effect through brain and pulse wave analyses before and after a forest walk to the university students. Bio-signals of brain and pulse waves were measured using Omnifit Mindcare. After analyzing four brain wave items such as concentration and four pulse wave items such as heart health, it is identified that the stress level of university students was higher than that of the general public, and the brain stress level was approached to the normal range for 19 people with clear improvement. For pulse waves, a statistically significant decrease in sympathetic nerve activity (%) was confirmed. Although the slight fluctuations within the normal range were caused by short term and individual differences, it showed that the forest walking is partially effect on the relieving stress.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

A Study on the Determination of Fracture Parameters for Rubber Toughened Polymeric Materials Using on Instrumented Charpy Impact Test (계장화 샤르피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Park, Myeong-Gyun;Choe, Yeong-Sik;Park, Se-Man;Yang, Jin-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1520-1526
    • /
    • 2002
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates(G$\_$c/) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor Kid was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • Journal of Adhesion and Interface
    • /
    • v.4 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF

Fabrication of Polysilicon Microstructures Using Vapor-phase HF Etching and Annealing Techniques (HF 증기상 식각과 열처리를 이용한 다결정 규소 미세 구조체의 제작)

  • Park, K.H.;Lee, C.S.;Jung, Y.I.;Lee, J.Y.;Lee, Y.I.;Choi, B.Y.;Lee, J.H.;Yoo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.603-605
    • /
    • 1995
  • We present a novel method. to fabricate surface micromachined structures without their sticking on the substrate. An anhydrous HF/$CH_3OH$ vapor-phase etching (VPE) of sacrificial $SiO_2$ layers was employed to release 0.5-2 {\mu}m$ thick polysilicon cantilevers. The fabricated structures were observed using scanning electron microscope and 3-dimensional optical microscope. The results show that we can successfully make cantilever beams up to 1200{\mu}m$ long without sticking. Annealing effects on residual stress of polysilicon microstructures were also investigated. Anneal ins at 1100$^{\circ}C$ for 1 hour was found to be effective to release the residual stress of the polysilicon microstructures. These VPE and anneal ins techniques will be useful in surface micromachining technologies.

  • PDF

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.