• 제목/요약/키워드: stress related gene expression

검색결과 269건 처리시간 0.029초

Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets

  • Jinbao Li;Jianmin Zhang;Xinlin Jin;Shiyin Li;Yingbin Du;Yongqing Zeng;Jin Wang;Wei Chen
    • Animal Bioscience
    • /
    • 제37권2호
    • /
    • pp.193-202
    • /
    • 2024
  • Objective: Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. Methods: The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR) to examine the mechanism of oxidative damage. Results: A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. Conclusion: Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.

Enhanced Acid Tolerance in Bifidobacterium longum by Adaptive Evolution: Comparison of the Genes between the Acid-Resistant Variant and Wild-Type Strain

  • Jiang, Yunyun;Ren, Fazheng;Liu, Songling;Zhao, Liang;Guo, Huiyuan;Hou, Caiyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.452-460
    • /
    • 2016
  • Acid stress can affect the viability of probiotics, especially Bifidobacterium. This study aimed to improve the acid tolerance of Bifidobacterium longum BBMN68 using adaptive evolution. The stress response, and genomic differences of the parental strain and the variant strain were compared by acid stress. The highest acid-resistant mutant strain (BBMN68m) was isolated from more than 100 asexual lines, which were adaptive to the acid stress for 10th, 20th, 30th, 40th, and 50th repeats, respectively. The variant strain showed a significant increase in acid tolerance under conditions of pH 2.5 for 2 h (from 7.92 to 4.44 log CFU/ml) compared with the wild-type strain (WT, from 7.87 to 0 log CFU/ml). The surface of the variant strain was also smoother. Comparative whole-genome analysis showed that the galactosyl transferase D gene (cpsD, bbmn68_1012), a key gene involved in exopolysaccharide (EPS) synthesis, was altered by two nucleotides in the mutant, causing alteration in amino acids, pI (from 8.94 to 9.19), and predicted protein structure. Meanwhile, cpsD expression and EPS production were also reduced in the variant strain (p < 0.05) compared with WT, and the exogenous WT-EPS in the variant strain reduced its acid-resistant ability. These results suggested EPS was related to acid responses of BBMN68.

고구마 배양세포에서 Peroxiredoxin cDNA의 분리 및 발현 특성 (Molecular Cloning and Characterization of a Peroxiredoxin cDNA from Cell Cultures of Sweetpotato)

  • 박수영;류선화;권석윤;김종국;곽상수
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.135-141
    • /
    • 2003
  • Peroxiredoxin(Pix) are large family of peroxidases that reduce alkyl hydroperoxides and hydrogen peroxide. A cDNA clone (referred to as swPrxl) encoding Pix was from a sweetpotato cDNA library constructed from suspension-sultured cells, and its expression was investigated in terms of stress. The swPrxl contained an open reading frame (ORF) encoding mature protein of 193 amino acids with calculated molecular mass of 20.8kDa. The predicted amino acid sequence of swPrxl has two conserved cysteines that are essential resicues for the reduction of peroxides. It showed high amino acid sequence homology ot PixIIF of Arabidopsis (77%) and putative Prx of rice(72%). RNA gel-blot analysis showed that swPrxl gene was expressed dominantly in leave among intact tissues, and also highly detect in suspension-cultured cells. Interestingly, the level of swPrxl transcripts was almost the same regardless of the growth stage in suspension culture. Furthermore, the transcription level of swPrxl gene was not significantly changed in response to various stress treatments such as wounding, extreme temperature and stress-related chemicals RT-PCR analyses.

Effects of selenium on the survival and invasion of trophoblasts

  • Na, Jee Yoon;Seok, Jin;Park, Sohae;Kim, Jung Seok;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제45권1호
    • /
    • pp.10-16
    • /
    • 2018
  • Objective: Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods: To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results: Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion: These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.

Identification of Putative MAPK Kinases in Oryza minuta and O. sativa Responsive to Biotic Stresses

  • You, Min Kyoung;Oh, Seung-Ick;Ok, Sung Han;Cho, Sung Ki;Shin, Hyun Young;Jeung, Ji Ung;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.108-114
    • /
    • 2007
  • The mitogen-activated protein kinase (MAPK) signaling cascade is critical for regulating plant defense systems against various kinds of pathogen and environmental stresses. One component of this cascade, the MAP kinase kinases (MAPKK), has not yet been shown to be induced in plants following biotic attacks, such as those by insects and fungi. We describe here a gene coding for a blast (Magnaporthe grisea)- and insect (Nilaparvata lugens)-responsive putative MAPK kinase, OmMKK1 (Oryza minuta MAPKK 1), which was identified in a library of O. minuta expressed sequence tags (ESTs). Two copies of OmMKK1 are present in the O. minuta genome. They encode a predicted protein with molecular mass 39 kDa and pI of 6.2. Transcript patterns following imbibition of plant hormones such as methyl jasmonic acid (MeJA), ethephone, salicylic acid (SA) and abscisic acid (ABA), as well as exposure to methyl viologen (MV), revealed that the expression of OmMKK1 is related to defense response signaling pathways. A comparative analysis of OmMKK1 and its O. sativa ortholog OsMKK1 showed that both were induced by stress-related hormones and biotic stresses, but that the kinetics of their responses differed despite their high amino acid sequence identity (96%).

구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향 (Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress)

  • 김민주;송홍규
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1과 P. migulae MS2는 여러 가지의 구리-내성 및 식물 생장 촉진 방법을 갖고 있으며 또한 스트레스 에틸렌의 전구체인 1-aminocyclopropane-1-carboxylic acid (ACC)의 ACC deaminase에 의한 가수분해를 통해 식물에서 비생물적 스트레스를 완화시킬 수 있다. 구리 농도 700 mg/kg 토양에서의 4주간 소규모 토마토 재배 실험에서 MS1과 MS2 접종은 비접종 대조군에 비해 토마토 식물의 지상부와 뿌리 길이 및 습윤중량과 건조중량을 모두 유의성 있게 증가시켰다. 접종 토마토 식물은 비생물적 스트레스로부터 식물을 보호할 수 있는 proline및 산화 스트레스 지표인 malondialdehyde도 비접종 대조군보다 적게 함유하였다. 에틸렌 생합성에 관여하는 ACC synthase 유전자, ACS4와 ACS6 그리고 ACC oxidase 유전자, ACO1와 ACO4는 구리 스트레스를 받는 토마토에서 강하게 발현된 반면 MS1과 MS2 접종 토마토에서는 유의성 있게 감소했다. 또한 금속 결합 단백질인 metallothionein 암호화 유전자인 MT2도 위의 유전자들과 유사한 발현 양상을 보였다. 이 모든 결과들은 이 근권세균들이 구리 스트레스 하의 토마토 식물에 구리 내성을 부여하여 낮은 수준의 구리 스트레스와 생장 촉진을 허용하는 것을 가리킨다.

유전자 상호발현 조절을 통한 에탄올 내성 메커니즘의 규명 (Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression)

  • 정회명;최호정;남수완;전숭종;김연희
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.17-22
    • /
    • 2016
  • 에탄올은 산업적으로 매우 가치 있는 물질이지만, 효모세포에 있어서 에탄올의 축적은 세포 독성과 목적산물의 생산성을 감소시키는 스트레스원이다. 따라서 효모세포에 있어서 에탄올 내성의 증가는 에탄올 생산성 증대와 밀접한 관계가 있는 중요한 요소라고 할 수 있다. 본 연구에서는 에탄올 내성을 증가시키기 위해 YDJ1과 PEP5 유전자를 목적 유전자로 선정하여 이들 유전자의 과발현과 과발현에 따른 상호발현조절을 분석하여 에탄올 내성 메커니즘의 일부를 해명하고자 한다. YDJ1과 PEP5 유전자를 ADH1 promoter 하류에 연결시켜 pA-YDJ1과 pA-PEP5 plasmid를 구축하고 각각 BY4742, BY4742△ydj1와 BY4742△pep5 균주에 도입하였다. YDJ1과 PEP5 유전자의 과발현에 의해서 BY4742△ydj1/pA-YDJ1과 BY4742△pep5/pA-PEP5 균주의 에탄올내성이 숙주세포의 수준까지 회복되었음을 확인 할 수 있었다. 이 두 유전자의 상호발현조절을 조사하기 위해, BY4742△ydj1△pep5 균주에서 YDJ1과 PEP5 유전자의 과발현을 시도해본 결과, BY4742△ydj1△pep5/pA-YDJ1, pA-PEP5 균주의 경우, 8% 에탄올 배지에서 BY4742 균주의 약 90%정도 까지 에탄올 내성이 회복됨을 확인하였다. BY4742△ydj1△ pep5/pA-YDJ1, pA-PEP5 균주에서 YDJ1 유전자는 PEP5 유전자의 과발현을 더욱더 유도하여 에탄올 내성을 증가시켰으며, 이는 YDJ1 유전자가 PEP5 유전자의 상위에서 발현을 부분적으로 조절한다고 생각 할 수 있다.

Quantitative Evaluation of Viability- and Apoptosis-Related Genes in Ascaris suum Eggs under Different Culture-Temperature Conditions

  • Yu, Yong-Man;Cho, You-Hang;Youn, Young-Nam;Quan, Juan-Hua;Choi, In-Wook;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제50권3호
    • /
    • pp.243-247
    • /
    • 2012
  • Ascaris suum eggs are inactivated by composting conditions; however, it is difficult to find functional changes in heat-treated A. suum eggs. Here, unembryonated A. suum eggs were incubated at $20^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ in vitro, and the gene expression levels related to viability, such as eukaryotic translation initiation factor 4E (IF4E), phosphofructokinase 1 (PFK1), and thioredoxin 1 (TRX1), and to apoptosis, such as apoptosis-inducing factor 1 (AIF1) and cell death protein 6 (CDP6), were evaluated by real-time quantitative RT-PCR. No prominent morphological alterations were noted in the eggs at $20^{\circ}C$ until day 10. In contrast, the eggs developed rapidly, and embryonated eggs and hatched larvae began to die, starting on day 2 at $50^{\circ}C$ and day 1 at $70^{\circ}C$. At $20^{\circ}C$, IF4E, PFK1, and TRX1 mRNA expression was significantly increased from days 2-4; however, AIF1 and CDP6 mRNA expression was not changed significantly. IF4E, PFK1, and TRX1 mRNA expression was markedly decreased from day 2 at $50^{\circ}C$ and $70^{\circ}C$, whereas AIF1 and CDP6 mRNA expression was significantly increased. The expressions of HSP70 and HSP90 were detected for 9-10 days at $20^{\circ}C$, for 3-5 days at $50^{\circ}C$, and for 2 days at $70^{\circ}C$. Taken together, incremental heat increases were associated with the rapid development of A. suum eggs, decreased expression of genes related to viability, and earlier expression of apoptosis-related genes, and finally these changes of viability- and apoptosis-related genes of A. suum eggs were associated with survival of the eggs under temperature stress.

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • 제39권3호
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

지방유래 줄기세포의 생존능 향상을 위한 CEACAM 6의 생물학적 기능에 대한 연구 (Biological Function of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 6 for the Enhancement of Adipose-Derived Stem Cell Survival against Oxidative Stress)

  • 고은영;유지은;정세화;김평환
    • 대한임상검사과학회지
    • /
    • 제51권4호
    • /
    • pp.475-483
    • /
    • 2019
  • 세포기반 치료제에 사용되는 줄기세포는 재생능력과 다양한 세포로의 분화능력으로 인해 재생 의학 분야에서 광범위하게 관심을 끌었으며, 많은 불치병에 적용된다. 하지만, 이러한 줄기세포는 여전히 치료 전 세포증식 및 질병 투여부위에서의 낮은 생존률로 인해 충분한 치료효과가 나타나지 않는 단점이 있다. 이것을 해결하고자, 우리는 세포부착능과 항세포자살 기능을 가지고 있는 carcinoembryonic antigen (CEA) gene family의 하나인 CEACAM 6를 사용하였다. 이것을 줄기세포에 적용 전, 먼저 세포별로 이 단백질이 발현되는지를 확인하였고, 이 유전자가 발현되는 벡터를 줄기세포에 삽입시키기 위한 최적 조건을 선정하였다. 그 후, 도입된 CEACAM 6발현벡터로부터 줄기세포에서 이 유전자가 발현되는지를 확인하였다. 그리고 인체투여 시 발생되는 산화적 스트레스와 유사한 조건에서의 이 유전자의 기능을 평가하기 위해 과산화수소(H2O2)를 처리하였다. 산화적 스트레스 조건하에서 CEACAM 6가 발현되는 줄기세포는 그렇지 않은 세포에 비해 세포의 생존률이 현저히 증가하는 것을 확인하였다. 이를 통해, 이 CEACAM 6는 줄기세포의 치료효능과 세포증식을 강화시킬 수 있는 다른 선택지로서의 가능성이 있음을 확인하였다.