• Title/Summary/Keyword: stress failure

Search Result 2,869, Processing Time 0.033 seconds

The Determination of Required Tensile Strength of Geosynthetic Reinforcements for Embankment on Soft Ground (연약지반 보강성토에서 섬유보강재 소요인장강도의 결정)

  • 이광열;황재홍;구태곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.379-385
    • /
    • 2003
  • In the existing method to design geosynthetic reinforced embankment, the required strength of reinforcements is determined by vertical stress only rather than strain. This strength is not in accord with tensile strength that behaves as reinforcement in earth structures. The reinforcement and adjacent soil on the failure plan behave in one unit at the initial stress phase but they make a gap in strain as stress increases. This issue may cause a big impact as a critical factor on geosynthetic reinforcement design in earth structures. The quantitative analysis on strain behavior was performed with a PET Mat reinforced embankment on soft ground. From this study, several outstanding discussions are found that tensile strength of reinforcement governs the failure of embankment when the soil stress is greater than failure stress. Also the optimum required tensile strength of geosynthetic reinforcement(Tos) should be determined by stress, displacement, displacement gap and safety factor of soil-PET Mat at the location of PET Mat.

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

Deriving Probability Models for Stress Analysis

  • Ahn Suneung
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.139-149
    • /
    • 2002
  • This paper presents an approach to derive probability models for use in structural reliability studies. Two main points are made. First, that it is possible to translate engineering and physics knowledge into a requirement on the form of a probability model. And second, that making assumptions about a probability model for structural failure implies either explicit or hidden assumptions about material and structural properties. The work is foundational in nature, but is developed with explicit examples taken from planar and general stress problems, the von Mises failure criterion, and a modified Weibull distribution.

  • PDF

Nonparametric Reliability Estimation in Strength-Stress Model: B-Spline Approach

  • Kim, Jae-Joo;Na, Myung-Hwan;Lee, Kang-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.152-162
    • /
    • 1999
  • In this paper we develope a new nonparametric estimator of the reliability in strength-stress model. This estimator is constructed using the maximum likelihood estimate of cumulative failure rate in the class of distributions which have piecewise linear failure rate functions between each pair of observations. Large sample properties of our estimator are examined. The proposed estimator is compared with previously known estimator by Monte Carlo study.

  • PDF

Deformability Models of Shear Controlled Members (전단지배형 부재의 변형능력 산정을 위한 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.357-360
    • /
    • 2004
  • Estimation of deformation capacity of non-flexural reinforced concrete members is proposed using basic concepts of limit analysis and the virtual work method. This new approach starts with construction of admissible stress field as for an equilibrium set. Failure mechanisms compatible with admissible stress fields are postulated as for displacement set. It is assumed that the ultimate deformations as result of failure mechanisms are controlled by ultimate strain of concrete in compression. The derived formula for deformability of deep beams in shear shows reasonable range of ultimate displacement.

  • PDF

The Realization of Binary Systems by the Latent Stress Model

  • Choi, Daiwoo
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.1
    • /
    • pp.50-63
    • /
    • 1995
  • We study under what condition the probability of the failure state of each component is realized by the latent stress model which considers the cause of the failure as well as the state of the given system. As a result, when the number of the components is less than or equal to 3, the $MTP_2$ property is a necessary and sufficient condition for the realization of the probability of system state by the latent stress model. Moreover, if the probability of the system state involving 2 or 3 components satisfies the $MTP_2$ property, one could guess that each component is under the same stress.

  • PDF

Statistical Properties of Earthquake 'Quanta' (지진양자의 통계적 성질)

  • 우종량;김소구
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.45-49
    • /
    • 1996
  • It is shown that the concept of 'earthquake quanta' proposed by Sacks and Rydeleck (1995) may be expressed in a more general form. The property that for large earthquakes the stress drop is approximately a constant, while for small events the stress drop is proportional to the moment seems independent of the failure criteria of the earthquake quanta. The physical significance of the concept of earthquake quanta is discussed in the perspective of 'seismon'.

  • PDF

Estimation of Confinement Stress for Concrete Compressive Member Rehabilitated with Carbon Fiber Laminate (탄소섬유판으로 보강된 콘크리트 압축부재의 횡보강응력의 산정)

  • Lee, Hee-Kyoung;Kim, Sung-Chul;Yoo, Seong-Hoon;Kim, Joong-Koo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.593-600
    • /
    • 1998
  • In this study, confinement stress of concrete compression members rehabilitated with C.F.L were analyzed from the test. Test parameters are spacing, thickness and ply of rehabilitation material. Displacement, failure load were measured during test. The failure mode and ultimate load were analyzed from these measured data. In this study, a model equation for calculation of the confining stress with C.F.L was proposed based on the test results investigated here. The proposed equation included the effects of spacing, thickness and ply of rehabilitation material.

  • PDF

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF