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The Realization of Binary Systems
by the Latent Stress Model
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The Global Analysis Research Center, Seoul National University

Abstract

We study under what condition the probability of the failure state of each
component is realized by the latent stress model which considers the cause of the
failure as well as the state of the given system. As a result, when the number of
the components is less than or equal to 3, the MT P, property is a necessary and
sufficient condition for the realization of the probability of system state by the
latent stress model. Moreover, if the probability of the system state involving 2
or 3 components satisfies the MTP, property, one could guess that each
component is under the same stress.

1. Introduction

Suppose there is a system involving # components. To a single component, we
associate a random variable X. It has a value 1 if a component is failing and 0 if a
component is functioning.

For »n-component system, the state of the system can be described by an #-
dimensional random vector X=(X,. -, X,), where X, =1 or 0 depending on
whether the j-th component is failing or not. We call X a system state vector.

Let ©® describe the stress of the component such as heat, fraction, or even
unobserved resistance. As well as the state of the given system, one would be
interested in the cause of failure. Thus, the latent stress model is valuable in
analyzing the system: fault.

The latent stress model represents the distribution of the system state vector X
as

P(x=x)=[". H p,O"7 1—p,0) " dF(©), (1)
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where dF (9) is a probability measure of stress variable ® and each functions p,(8)
is nondecreasing in 8.
The model (1) is represented under the following three assumptions:

i . latent conditional independence
P(X=x10)=T] P(X, =x,10).

That is, the latent stress variable is so informative that the distribution of the
system state vector is conditionally independent, given 0.

ii . latent monotonicity
p; (0= P(X, =1]6) is nondecreasing in 6.

In other words, we assume that a component with higher stress is more likely to
be failed well than one with lower stress.

iii. latent unidimenstonality
The latent stress variable is unidimensional.

The latent stress model (1) is originally from item response theory studied by
many psychometricians, Cressie and Holland(1983), Holland and Rosenbaum
(1986), and Junker(1993). They call (1) the latent trait model expressing the
distribution of item response vector X where either X, =1 if an examinee answers
7-th item correctly, or X, =0 otherwise. Also they denote that ® is a latent trait
variable which is examinee’s ability.

As is well known, under the three conditions, each component of a system is not
independent. Esary and Proschan(1970) studied the binary system which is not
independent. The latent stress model with equal failing probability of each
component was researched by Lau(1992).

In Section 2, we review several known probability inequalities of P(X=x)
realized by the latent stress model. Also we introduce a notion CMT P, which is
stronger than the M7T P, property.

In Section 3, we discuss the CMT P, property, essentially a conditional MT P
property.

In Section 4 (see Theorem 4.1 and Theorem 4.2), we prove a necessary and



52 - TR #2370 A1E 1995 34

sufficient condition for the realizability in terms of P(X=x) of a latent stress
model, when a system has 3 components.

Since the MTP, property will be shown to be a necessary and sufficient
condition for the realizability of P(X=x) by the latent stress model when »=3, a
stronger necessary condition such as CMTP. must follow from the MTP,
property in the case that »n=3.

2. Notions of positive ordering

Let
Q,.A,, P)for =1, -, n

be given probability measure spaces and let

@ A P)=T1@, A, P)

be their direct product. Further, let X=(X,, ---, X,) be a random vector with

X, €Q,(j=1, - n. Alsolet A=]]2, denote a product measure on , where A, is
J=1

g-finite measure on §2,, 7 =1, -+, n.

2.1 Total positivity
As a strong form of positive ordering, the notion of total positivity plays an
important role in the theory of convexity, inequalities, and moment problems.

Definition 2.1 A real function ¢ is totally positive of order (T P,) if

e X e X i ¢(x1’yl:) ¢<xl’y2) o ¢(x1:,vm)
¢{/ ; ‘ | " } = ¢(x2’-yl\’l ¢(x.‘).y£> ot ¢(xly},m)

VOV, Yoy s Yo g >0

¢(xm; y) ¢(xmyy2) ve ¢(xms ym) ‘
for all

<, <Ly v <y <oy, and 1< m<y.
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2.2 Multivariate total positivity of order 2

For X=(X,. . X,), Y=(,, -, Y,) defined on Q, we define the following
operations
xVy = (max(x,, y,), -, max(x,, ¥,))
and
x Ay = (minlx,, y,), -, min(x,, y,))

Multivariate version of total positivity of order 2 can be defined as follows.

Definition 2.2 A random vector X=(X,, -, X,) defined on Q having the density
Ffunction f=dP/dx is multivariate totally positive of order 2IMTP.) if

FlxVvy) fxAy)=f(x)fy). (2

In general, if a function f satisfies (2), we say that / has the M7 P, property.
Many fundamental properties of MT P, were developed by Karlin and Rinott
{1980).

Proposition 2.1 l.et (y,, 2) and (2, 3, ) be partitions of x, and x., respectivelv.

Suppose f(x)=Ffiy,, z) and g(x.)=g(z, ¥.) satisfy the MT P, condition. Then,

also
h’(.’VMyB) = ff(yly Z)g(z,yg)dz
satisfies the MT P. condition.

Proposition 22 1If f(x) and g (x) have the MT P, property, then f(x)g(x) also has
the MT P, propertv.

Kemperman(1977) found the relationship between TP, and MTP, .

Proposition 2.3 l.et f(x) be TP. in every pair of arguments. Suppose f(x)>0
Ffor all x€Q. Then, the function f(x) has the MT P. property for all x€Q.
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2.3 Stronger concept of positive dependence orderings, CMT P,
Holland and Rosenbaum(1986) defined conditional multivariate totally positivity
of order 2 (CMT P, ) property which is stronger than the MT P, property.
Let (Y, Z) be a partition of X. More precisely,

Y=1X,.jeltand Z =X, je]J}. (3)

where [ and J are complementary subsets of N = {1, ---, n}.
The definition of CMTP, is as follows.

Definition 24 A random vector X has the CMTP, property if a conditional
density X given Z has MT P, property for all possible partition (Y, Z) of X and
any Z¢& Z_ A;.

i€l

2.4 Properties of a latent stress model

In Section 1, we introduced three basic assumptions of a latent stress model.
The assumptions induce many interesting necessary conditions.

By the assumption of unidimensionality and monotonicity of the latent stress
variable, p;(8)/(1-p.(60)) is nondecreasing in 0, that is,

PX,=110")P(X. =010
P(X, =1|0P(X,=010")

(4)

for all ¥<#'. But, (4) is equivalent to

P(X, =010 P(X,=016"" |
P(X =110 P(X, =116 =0.

Thus, P(X; =x,;1 ® =6) has the TP, property. Hence, from Proposition 2.2, it is
immediate that I! P(X,=x,18) has the MTP, property. Therefore, by

b

Proposition 2.1,
Pix=x)=f . [1P(X, =x, 0)dF(©)

satisfies the MT P. property.
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x, X 0=0 ©=0
0 0 0. 0.1
0 1 0.2 0.1
L1 0 0.1 0.1
1 1 0. 0.4

{ Table 1> joint density of (x,, x., 8)

Remar 25 Let (X, X.. 8 be a random vector such that each density function of
(X,. 0) and (X, 0) satisfies the TP, property. Then, (X,. X,) need not have the
TP, property. See the counterexample described in Table 1.

Rosenbaum(1984) showed that P(X=x) represented by a latent stress model
always has the CMT P, property, see also Holland and Rosenbaum(1986).

3. General properties of the latent stress model

Let X=(X,, . X,) be a system state vector. Here X, =1 or 0 depending on
whether a 7-th component is failing or not. We would like to know what kind of
P(X=x) is realizable by a latent stress model. Cressie and Holland (1983) studied
necessary and sufficient conditions for the realizability of the latent stress (trait)
model when there are two or three components (#<3).

To avoid trivial details, we will usually assume that 0<p, =P(X, =1|0< |
This implies that P(X=x)>0 for all x € {0, 1}".

For convenience, we let

p, @)
() = L
V(@ Cp @)

Here p,(@)=P(X =1]6). Note that 0<V (f)< ©. Thus, the distribution of the
system state vector X becomes

P(X=x)=_f . hix, OdF (). (5)

Here,
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hix,0) = COTIV,@©".
where
C@)=zflPLXJ=Olm=:i(l~pAM)

Observe that each 17;(9) is nondecreasing in 0.
Let A be a subset of N={1, ---, n}. Let further, g{A) denote the probability
that the set of failed components coincides with A. Thus,

qlA) =Pl X=x), where x; =1 if and only if j€ A. (6)

Formula (5) implies that
2 = [ [TV, 0)dGw. (7
where dG(0) =C()dF(0) Note that ¥ a(A)=1and g@)=_fCOIF ().

Moreover, g(A)>01or all ACN.
The following result is due to Holland and Rosenbaum(1986). It states that
under the latent stress model the function g(A) has the MTP, property. We

include a new proof
Proposition 3.1 et A and B be arbitrary subsets of N={1, ---, n}. Then,
g(AUB)gtANB)>g(A) g B). (8)

Proof. For any pair of nondecreasing functions, / and g on R and any finite
measure p on R, one has that

ST - ign)—gx') dux) dulx’) 20,
and thus,

S redpfauz [ ranfedp.
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Letting,

FO = ILV.@;20 = 1 V,0;du® = T1_V,0)dGi6),

JEAB

(8) is immediate.
The representation (6) and Proposition 3.1 imply that P(X=x) has the MTP.

property as was shown by Holland and Rosenbaum(1986).
Let (Y, Z) be a partition of X, defined in (3). Let, further ZC {0, 1}’. Define

Py|Z)=P(Y=y|2z€Z)

-1 = -
= PlzeZ) ;Z P(Y =y, Z=2).

In Section 2, we reviewed the CMT P, property. It states that
PyVy* | Z)PyNAy* | Z)2Py | Z)P(y*| 2Z)

forally, y*€1{0,1}' andall ZC {0, 1}.
In view of Proposition 3.1, the CMT P, property follows immediately from the

following lemma.

Lemma 31 Let l<m<n—1. If each latent stress model with m components
satisfies a certain property, the same property holds for each conditional
probability of the form P(Y=y |z € Z) with |I|=m, associated to a latent stress
model involving n components.

Proof. The statement follows immediately from the following representation:

PY=ylz€ Z)

SO0 A-p, @) % 12070 -pi(6) " dF ()

F{=3 I3}

1
P(ze Z)

[

= S 00,07 -, )" dH (6)
for ally € {0, 1}'. Here, the distribution function dH (6) is defined by

dH (9) = I 2,07 QA—p, ) " dF(0). (9

1
P(ZEZ) z;l €
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4. Conditions for realizability

In this section, we assume that »>3.
The MT P, property of ¢ (A) (defined as (7)) requires that

g(AUB)g(ANB)=q(A)q(B)

for an arbitrary A, BCN. For convenience, we define
oAy qLA) 10
g(A) @) . (ACN). (10:

Thus, (¢ )=1. If n=2, the MT P, property is equivalent to
giil, 2 > g1 g 2h.
When » =3, the MT P, property is equivalent to:

¢, 7)) =qUlih g b if i#j7and {7, JICN:
GG, 2,30 gUkY =qgld, kY if i, 7. k are distinct. (11

Theorem 4.1 Let n=2. In order that q(A), (ACN) can be realized by a latent
stress model, it is necessary and sufficient that

gL 2h =qdihguzh. (12

Furthermore, if (12) holds, q(A), (ACN) can be realized by a probability measure
with 2-point support.

Proof. We need that

g(ih = JV.0dG 0),(=1,2):4G1, 2) = JV.@V,©)dG ®),

where dG'(8)=dGif) /g(¢) is a suitable probability measure and where each
function V,(8), (j =1, 2) is nondecreasing in #. Since

S S W @)=V, (0)-V.(0,)dG (0,)dG’ (6,)=0,
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we see that 2(g({1. 2)) —¢({1}) ¢({2}) =0, which is (12).

Conversely, assume (12), where ¢({i})>0, (=1, 2). Let 0,<6,, 0<p<]1; (the
parameter p will be specified below). Further, let be # and v such that 0<u<g({!
b and 0<o<g{{2}), and define

V@) =u,V,0)=v;

Vi) = u + -Q—(-i—%)—_—”—;vg(gz =+ qﬂ{Zp})—v

Let further G’ (8) have support {6,, 8,} with masses 1 —p and p, respectively. One
easily verifies that

(1_1))Vj<61) _+' pV](HV) = é({j}), (]21, 2) (13)
We further need that

_@1N-u)@U2D-v) ”
p ’

+u + ul@g{2h) —v) + v@@{{1}) —w).
This is equivalent to

p=— G{1h—w) (@2 —v) 1)
@01, 2)—q1iDg2M F g1 —wg{2H—v) - :

Note thatg({1, 2) 2g({1Hg({2}), «u<g({1}) and v<g({2}) implies 0< p<1.

Let us now study the case n=3.

Theorem 4.2 Let n=3. The MTP, condition (as in (11)) is not only necessary but
also sufficient for the realization of P(X=x) by a latent stress model. Moreover.
if it holds then P(X=x) can even be realized by a probability measure with 2-point
support.

Proof. In Proposition 3.1, we already showed that P(X=x) represented by the
latent stress model has the MT P, property. So the proof for the sufficiency of

the MT P, property is only left.
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Let

(] e gUL2.3D)
by = N Asi<isds o= g

Then, the MT P, condition is equivalent to
1<b,<c, (1<i<5<3); (16:
buby<c, (i,7,karedistinct withi<j). (17
Permutating indices, we may assume without loss of generality that
1<b, <b,, <by. (1&)

In this case, the inequality c>b,,b,, implies analogous inequalities such as ¢=6,.5 ..
and ¢ =56,,b,,.

Let 6, <6, and 0<p<1. Further, let dG’° have mass pand g=1—p at 6, and 6 .
respectively. Letting U,; =V.(0,)/G({1}), we need that

pU, +qU.. =1, (=123 (19
pU Uy + qU U, = b, (1<i<j<3) (2w
pU, U, U, +qU.U,U, =c (21}

and further that 0<:U,, <U;,. Thus (19) implies that
p(l"U;l ::q(L/,‘g -"1) =y,(Say). (Z_“:l, 2, 3,}, Where OSU,'] SlSU,Q .
Therefore,

£

Us =1-%

andU, =1+ %where 0<y,<p, (i=1,2 3. (22)

Let further

,Bij = bl’l-—l, (lsl‘<]33)
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FH¢
Thus, in view of (18), the B,; are prescribed numbers satisfying

0< B, <Bis < fo. (23)

Moreover, the condition ¢>b,,6, takes the form

c=1+ ﬁm + ﬂzn + ﬁl:% + ﬁ]:sﬁzs (24)

For 1<i< <3, (20) is equivalent to
pi, = b, —1=pUU, +qU,U,;; —1

yi .'V; yi yr’
2y _2r e 2y
pU1-2) (1=20) +q(1+25) (1425 -1

Thus, we need that

(25)

Yy = \/bQﬁlzzﬁm—Ez: vy, o= \/E;,Bzzs /ﬁla 3V =N PaPufa P .

In view of (23), one has that y, <y, <v,. Thus, the condition vy, <pfori=1, 2, 3is

implied by v, << p, that is,

_2 ﬁla ﬁz:s“_ ey
q > ““‘-—“Bu . (26)

Using (22), condition (21) takes the form

i . Y Vs Y1 P Vs
c=p(1- p')(‘]‘“p)(l p)+q(1+q)(1+q)(l+q)
) v v Cuy (L ) I ST
1+ v + 3y + 3230 ( P + ) E 3y ( b + P ).

Q

il

Using (23), this becomes

1+ (ﬁwz + B + ﬁza) + (\/_'g——\/’jg:) V Bmﬂmﬁzs =C. (2
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Here, the left-hand side is a continuous increasing function of p/g varying from
the value 1+g..+p.+B.p» (when p/g=p:ps/p.. to the value +o (when g=0).
Hence, (27) has a unique solution satisfying (26).

As we have seen in Theorem 4.2, the MTP, condition is sufficient when #=3.
Thus, in this special case, the stronger necessary condition CMTP. as in Lemma
3.1 is implied by the MT P, condition.

Corollary 43 When n =3, the two conditions, MTP, and CMT P, are equivalent.

5. Conclusion and remarks

As we have seen, the latent stress model forms the mixture of the conditional
distribution of the system state vector, given the latent stress value. That is, the
latent stress model considers the cause of failure of each component.

The three assumptions for the model induce known inequalities such as the
MT P, property and the CMT P, property.

When the system contains 3 components, the M7 P. property is a necessary and
sufficient condition for the realization of P(X=x) by the latent stress model.
More precisely, if the distribution of the system state vector, P(X=ux) satisfies the
MTP. property, one would suspect that each component be failed by the same
cause such as heat or resistance.

When n>4, the MTPF is not sufficient. The counter example is founded by
Holland and Rosenbaum{1986). Also Choi(1994) shows that the CMT P. property
which i1s a stronger notion than the MTPFP. property is not sufficient for the
realization of P(X=x)} by the latent stress model.
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