• 제목/요약/키워드: stress distribution law

검색결과 151건 처리시간 0.023초

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

A Study of the Development of the Stress Optic Law of Photoelastic Experiment Considering Residual Stress

  • Suh, Jae-guk;Hawong, Jai-sug;Shin, Dong-chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1674-1681
    • /
    • 2003
  • Photoelastic experiment has two significant problems. The first problem is manufacturing a model specimen for complicated shapes of structures. The second problem is residual stress contained in the photoelastic model material. In this paper, the stress optic law that can be effectively used on photoelastic model materials with residual stress is developed. By using the stress optic law as developed in this research, we can obtain good results in photoelastic experiments using model material in which residual stress is contained. It is assured that the stress optic law developed in this research is useful. Therefore, it is suggested that the stress optic law considering residual stress can be applied to the photoelastic experiment for the stress analysis of the composite materials or bi-materials in which the residual stress is easily contained.

스트레스 한계가 있는 램프시험하에서 신뢰수명분포의 최우추정: 사용조건에서부터 스트레스를 가하는 경우 (Maximum Likelihood Estimation of Lifetime Distribution under Stress Bounded Ramp Tests: The Case Where Stress Loaded from Use Condition)

  • 전영록
    • 품질경영학회지
    • /
    • 제25권2호
    • /
    • pp.1-14
    • /
    • 1997
  • This paper considers maximum likelihood (ML) estimation of lifetime distribution under stress bounded ramp tests in which the stress is increased linearly from used condition stress to the stress u, pp.r bound. The following assumptions are used: exponential lifetime distribution under a constant stress, an inverse power law relationship between stress and mean of exponential lifetime distribution, and a cumulative exposure model for the effect of changing stress. Likelihood equations for the parameters involved in the model and asymptotic distribution of the estimators are obtained, and a numerical example is given.

  • PDF

다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링 (An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

스트레스함수가 균등분포인 가속수명시험 (Accelerated Life Tests under Uniform Stress Distribution)

  • 원영철
    • 대한안전경영과학회지
    • /
    • 제2권2호
    • /
    • pp.71-83
    • /
    • 2000
  • This paper presents accelerated life tests for Type I censoring data under probabilistic stresses. Probabilistic stress, $S_j$, is the random variable for stress influenced by test environments, test equipments, sampling devices and use conditions. The hazard rate, ,$theta_j$, is the random variable of environments and the function of probabilistic stress. Also it is assumed that the general stress distribution is uniform, the life distribution for the given hazard rate, $\theta$, is exponential and inverse power law model holds. In this paper, we obtained maximum likelihood estimators of model parameters and the mean life in use stress condition.

  • PDF

단속적 검사에서 스트레스한계를 가지는 램프스트레스시험을 위한 비모수적 추정 (Nonparametric Estimation for Ramp Stress Tests with Stress Bound under Intermittent Inspection)

  • 이낙영;안웅환
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.208-219
    • /
    • 2004
  • This paper considers a nonparametric estimation of lifetime distribution for ramp stress tests with stress bound under intermittent inspection. The test items are inspected only at specified time points an⊂1 so the collected observations are grouped data. Under the cumulative exposure model, two nonparametric estimation methods of estimating the lifetime distribution at use condition stress are proposed for the situation which the time transformation function relating stress to lifetime is a type of the inverse power law. Each of items is initially put on test under ramp stress and then survivors are put on test under constant stress, where all failures in the Inspection interval are assumed to occur at the midi)oint or the endpoint of that interval. Two proposed estimators of quantile from grouped data consisting of the number of items failed in each inspection interval are numerically compared with the maximum likelihood estimator(MLE) based on Weibull distribution.

Accelerated life test plan under modified ramp-stress loading with two stress factors

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제18권2호
    • /
    • pp.21-44
    • /
    • 2017
  • Accelerated life tests (ALTs) are frequently used in manufacturing industries to evaluate the reliability of products within a reasonable amount of time and cost. Test units are subjected to elevated stresses which yield quick failures. Most of the previous works on designing ALT plans are focused on tests that involve a single stress. Many times more than one stress factor influence the product's functioning. This paper deals with the design of optimum modified ramp-stress ALT plan for Burr type XII distribution with Type-I censoring under two stress factors, viz., voltage and switching rate each at two levels- low and high. It is assumed that usage time to failure is power law function of switching rate, and voltage increases linearly with time according to modified ramp-stress scheme. The cumulative exposure model is used to incorporate the effect of changing stresses. The optimum plan is devised using D-optimality criterion wherein the ${\log}_{10}$ of the determinant of Fisher information matrix is maximized. The method developed has been explained using a numerical example and sensitivity carried out.

  • PDF

크립재료의 균열형상 강체함유물에 대한 새로운 파괴역학 매개변수 개발 (Development of new fracture parameter for rigid inclusion with crack shape in creep material)

  • 이강용;김종성
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2165-2171
    • /
    • 1997
  • The analysis model is the infinite power law creep material containing the rigid inclusion with crack shape. The present analysis is performed using the complex pseudo-stress function method. The strain rate intensity factor is developed as new fracture mechanics parameter which represents the stress and strain rate distribution near a crack tip in power law creep material. The strain rate intensity factor is developed in terms of Kolosoff stress functions.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.