• Title/Summary/Keyword: stress corrosion cracks

Search Result 135, Processing Time 0.031 seconds

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials (인가전위 하에서 HT-60강 용접부의 SCC특성 평가)

  • Na, Ui-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

Estimation of Elastic Fracture Mechanics Parameters for Slanted Axial Through-Wall Cracks for Leak-Before-Break and Crack Growth Analysis (파단전누설 해석 및 균열거동 평가를 위한 축방향 경사관통균열의 탄성 응력확대계수 및 균열열림변위)

  • Huh, Nam-Su;Shim, Do-Jun;Choi, Suhn;Park, Keun-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.725-726
    • /
    • 2008
  • This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed 3-dimensional (3-D) elastic finite element (FE) analyses. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the center of the crack were provided. These values were also tabulated for three selected points, i.e., the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed Leak-Before-Break analysis considering more realistic crack shape development.

  • PDF

Relationship Between the Initiation and Propagation of SCC and the Electrochemical Noise of Alloy 600 for the Steam Generator Tubing of Nuclear Power Plants

  • Kim, Y.S.;Nam, H.S.;Kwon, Y.H.;Kim, S.W.;Kim, H.P.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • Since nuclear power plants are being operated under high temperature and high pressure, on-line monitoring technique to detect corrosion could be more effective than off-line method in shut-off period. In this operating condition, electrochemical noise method may be suitable to monitor the corrosion. This paper aims the analysis on the relation between the cracking and electrochemical noise signal of Alloy 600 under U-bending. When electrochemical noise monitoring technique was used during SCC test, it was judge to be obvious that if cracks generate, its generation can be detected by electrochemical current noise. Cracking-related noise was defined as the noise showing 5~10 times greater than the average value of background noise bands. On the base of crack noise, crack initiation time was determined. From SCC test and electrochemical noise monitoring in $25^{\circ}C$, 0.1 M $Na_2S_4O_6$ solution (Reverse U-Bended Alloy 600 SE+), average crack initiation time was obtained as 9,046 seconds and from its initiation time, it could be defined that net crack propagation rate is the crack length divided by ${\Delta}T$(= total test period - crack initiation time). Therefore, average net crack propagation rate was obtained to be $1.18{\times}10^{-9}\;m/s$.

Study on the tensile restraint crack characteristics in underwater welds of marine steel plates (선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.

Development the Technique for Fabrication of the Thermal Fatigue Crack to Enhance the Reliability of Structural Component in NPPs (원자력 구조재 신뢰성 향상을 위한 열피로 균열 시험편 제작 기법 개발)

  • Kim, Yong;Kim, Jae-Sung;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.43-49
    • /
    • 2008
  • Fatigue cracks due to thermal stratification or corrosion in pipelines of nuclear power plants can cause serious problems on reactor cooling system. Therefore, the development of an integrated technology including fabrication of standard specimens and their practical usage is needed to enhance the reliability of nondestructive testing. The test material was austenitic STS 304, which is used as pipelines in the Reactor Coolant System of a nuclear power plants. The best condition for fabrication of thermal fatigue cracks at the notch plate was selected using the thermal stress analysis of ANSYS. The specimen was installed from the tensile tester and underwent continuos tension loads of 51,000N. Then, after the specimen was heated to $450^{\circ}C$ for 1 minute using HF induction heater, it was cooled to $20^{\circ}C$ in 1 minute using a mixture of dry ice and water. The initial crack was generated at 17,000 cycles, 560 hours later (1cycle/2min.) and the depth of the thermal fatigue crack reached about 40% of the thickness of the specimen at 22,000 cycles. As a results of optical microscope and SEM analysis, it is confirmed that fabricated thermal fatigue cracks have the same characteristics as real fatigue cracks in nuclear power plants. The crack shape and size were identified.

Weldability of Type 444 Ferritic Stainless Steel GTA Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.29-33
    • /
    • 2003
  • The ferritic stainless steels are generally considered to have poor weldability compared with that of the austenitic stainless steels. However the primary advantages of ferritic stainless steels include lower material cost than the more commonly used austenitic stainless steels and a greater resistance to stress corrosion cracking. Thus, the weldability of ferritic stainless steels was investigated in this study. In concerning the weldability, Grain size measurement test, Erichsen test and Varestraint test were involved. full penetration welds were produced by autogeneous direct current straight polarity (DCSP) and pulsed currents gas tungsten arc welding (GIAW) and the effect of pulsed currents welding on the welds was compared to that of DCSP welding. The results showed that pulsed current was effective to refine grain size in the weld metal and the finest grain size was obtained at the frequency of 150Hz. In addition, the ductility of welds was lower than that of base metal. Finally, autogeneous type 444 welds were less susceptible to macro solidification cracks, but more sensitive to micro cracks; SEM/EDS analysis indicated that all the inclusions in the crack showed enrichment of Mn, Si, O and S.

  • PDF

Experimental and Analytical Study on Burst Pressure of a Steam Generator Tube with a T-type Combination Crack (T-형 복합 균열이 존재하는 증기발생기 전열관의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • Steam generator tubes experience widespread degradations such as stress corrosion cracking, wear, tube rupture, denting, fatigue and so on. The resulting damages can cause tube bursting or leak of the primary water which contains radioactivity Therefore the allowable size of the damage is required to be determined on the maintenance purpose. The burst pressure of a tube with a T-type combination crack consisting of longitudinal and circumferential cracks is obtained experimentally and analytically. Fracture parameters such as stress intensity factor and crack opening angle are investigated. Also the burst pressure for a T-type combination crack is compared with that of a single longitudinal crack to develop a length-based criteria.