Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results
It is known that material properties, connection quality and manufacturing methods are among the important factors directly affecting the behavior of steel connections and hence steel structures. The possible performance differences between a fabricated connection and its computer model may cause critical design problems for steel structures. Achieving a reliable design depends, however, on how accurately the material properties and relevant constitutive models are considered to characterize the behavior of structures. Conventionally, the stress and strain fields in structural steel connections are calculated using the finite elements method with assumed material properties and constitutive models. Because the conventional strain gages allow the measurement of deformation only at one point and direction for specific time duration, it is not possible to determine the general characteristics of stress-strain distributions in connections after the laboratory performance tests. In this study, a new method is introduced to measure displacement distribution of simple steel welded connections under tension tests. The method is based on analyzing digital images of connection specimens taken periodically during the laboratory tension test. By using this method, displacement distribution of steel connections can be calculated with an acceptable precision for the tested connections. Calculated displacements based on the digital image correlation method are compared with those calculated using the finite elements method.
Ceramic coatings with high hardness and excellent chemical stability have been successfully applied to various machine elements, tools, and implants. However, in the case of monolayer coating on soft substrates, a high-stress concentration at the interface between the coating and the substrate causes delamination of the coating layer. Recently, to overcome this problem, multilayer coatings with a metal layer with a low modulus of elasticity added between the ceramic and the substrate have been widely applied. This study presents the third part of a recent study and focuses on the effect of the number of coating layers on the Brinell hardness of multilayered coating with TiN/Ti, following the two previous studies on a new Brinell hardness test method for a coated surface and on the influence of substrate and coating thickness. Indentation analyses are performed using finite element analysis software, von Mises stress and equivalent plastic strain distributions, load-displacement curves, and residual indentation shapes are presented. The number of TiN/Ti layers considerably affect the stress distributions and indentation shapes. Moreover, the greater the number of TiN/Ti layers, the higher is the Brinell hardness. The stress and plastic strain distributions confirm that the multilayer coatings improve the wear resistance. The results are expected to be used to design and evaluate various coating systems, and additional study is required.
The strong continuous fiber reinforced metal matrix composites (MMCs) are recently used in aerospace and transportation applications as an advanced material due to its high strength and light weight. Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In order to be able to utilize these MMCs effectively and with safety, it must be determined their elastic plastic behaviors at the interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interlace was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. Using proposed model, the effects of the interface region and fiber arrangement in MMCs on the distributions of stress and strain are evaluated. The stress distributions of a thin multi layer interface have much less changes compared with conventional perfect interface. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.
In the context of the shortage of river sand, two types of manufactured sand (MS) were used to partially replace river sand (RS) to design manufactured sand concrete (MSC). A total of 81 specimens were designed for uniaxial compression test and beam flexure test. Two parameters were considered in the tests, including the types of MS (i.e. limestone manufactured sand (LMS), pebble manufactured sand (PMS)) and the MS replacement percentage (i.e., 0%, 25%, 50%, 75%, 100%). The stress-strain curves of MSC were obtained. The effects of these parameters on the compressive strength, elastic modulus, peak strain, toughness and flexural strength were discussed. Additionally, the sensitivity of particle size distributions to the performance of MSC was evaluated based on the grey correlation analysis. The results showed that compared with river sand concrete (RSC), the rising slope of the stress-strain curves of limestone manufactured sand concrete (LMSC) and pebble manufactured sand concrete (PMSC) were higher, the descending phrase of LMSC were gentle but that of PMSC showed an opposite trend. The physical and mechanical properties of MSC were affected by the MS replacement percentage except the compressive strength of PMSC. When the replacement percentage of LMS and PMS were 50% and 25% respectively, the corresponding performances of LMSC and PMSC were better. In generally, when the replacement percentage of LMS and PMS were same, the comprehensive performance of LMSC were better than that of PMSC. The constitutive model and the equations for mechanical properties were proposed. The influence of particle ranging from 0.15 mm to 0 mm on the performance of MSC was lower than particle ranging from 4.75 mm to 0.15 mm but this influence should not be ignored.
Transactions of the Korean Society of Mechanical Engineers A
/
v.29
no.2
s.233
/
pp.169-175
/
2005
In this paper, the contact stress and strain distributions in elastomer O-ring seals have been analyzed using a non-linear finite element method. The stress behavior of PTFE materials is assumed as Odgen model because the sealing clearance between the flange and the surface of the O-ring is not small and the sealing pressure of working fluids covers from the atmospheric pressure to high pressure of 15MPa. The contact normal force and stress in wavy O-rings in which is developed for this analysis are uniformly distributed along the flange and the wall of the rectangular groove. And the normal sealing forces are also kept high compared to other contact sealing models such as the conventional O-ring and X-ring, Thus, the FEM computed results indicate that the sealing characteristic of wavy O-rings is food compared with other contact seals.
Jo, Myoung-Hwan;Kim, Nak-Seok;Nam, Young-Ho;Im, Jong-Hyuk
Journal of the Korean Society of Hazard Mitigation
/
v.8
no.1
/
pp.39-45
/
2008
The most important elements in flexible pavement design criteria are stress and strain distributions. To obtain reasonable stress and strain distributions in pavements, moving wheel loads must be applied to analyze the pavement responses. In this study, finite element analysis was used to identify the three-dimensional states using the vehicle load into a constant-position / time-variable load (25, 50 and 80km/hr). In an elastic system, the strain is the same in both longitudinal and transverse directions under a single wheel. However, the same is not necessary in a viscoelastic system. Test results showed that the maximum values between transverse and longitudinal strains the bottom of asphalt concrete base layers under 25km/hr were were about 40 percent.
Proceedings of the Computational Structural Engineering Institute Conference
/
2001.10a
/
pp.393-400
/
2001
A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.
The dynamic compressive behavior of concrete after freezing and thawing tests are investigated by using the split Hopkinson pressure bar (SHPB) technique. The stress-strain curves of concrete under dynamic loading are measured and analyzed. The setting numbers of freeze-thaw cycles are 0, 25, 50, and 75 cycles. Test results show that the dynamic strength decreases and peak strain increases with the increasing of freeze-thaw cycles. Based on the Weibull distribution model, statistical damage constitutive model for dynamic stress-strain response of concrete after freeze-thaw cycles was proposed. At last, the fragmentation test of concrete subjected to dynamic loading and freeze-thaw cycles is carried out using sieving statistics. The distributions of the fragment sizes are analyzed based on fractal theory. The fractal dimensions of concrete increase with the increasing of both freeze-thaw cycle and strain rate. The relations among the fractal dimension, strain rates and freeze-thawing cycles are developed.
Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.