• Title/Summary/Keyword: stress and strain distributions

Search Result 208, Processing Time 0.027 seconds

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

A Study on Fretting Fatigue Life Prediction for Cr-Mo Steel(SCM420) (크롬-몰리브덴강(SCM420)에 대한 프레팅 피로수명 예측에 관한 연구)

  • Kwak, Dong-Hyeon;Roh, Hong-Rae;Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.123-130
    • /
    • 2007
  • Recently, a lot of work and interest have been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. In this study, the fretting fatigue lift and critical location ware estimated and evaluated through the multiaxial fatigue theories in a cylinder-on-flat contact configuration far Cr-Mo steel, SCM420, the material commonly is used in gears of the automobile and rollers of the conveyor. The strain-life curve was obtained from fatigue test for SCM420. The Fretting fatigue life and critical location were estimated through stress distributions, SWT-parameters and FS-parameters obtained from FEA. This paper showed possibility of applying multiaxial fatigue theories to fretting fatigue lift prediction comparing predicted life with experimental results.

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

An Approximate Analysis of Host Strip Rolling-a New Approach (열간 압연 공정의 신근사해법)

  • 전만수;강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1155-1165
    • /
    • 1990
  • A new method of predicting effect of rolling parameters on roll pressure, roll force, and power and energy consumptions in hot strip rolling is presented. The method is based on approximate solutions for velocity, strain rate, and stress distributions in the roll gap. The degree of approximation was examined by the finite element solutions. The theoretical predictions were compared with experimental data from hot rolling of steel strip and steel plate.

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

Thermoviscoelastic Stress Analysis by the Finite Element Method (유한요소법에 의한 열점탄성 응력해석)

  • Sim, Woo-JIn;Park, In-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2148-2158
    • /
    • 1996
  • Uncoupled, quasi-static and linear thermoviscoelastic problems are analyzed in time domain by the finite element approximation which is developed using the principle of virtual work and viscoelasticity matrices instead of shear and bulk relaxation functions as in usual formulations. The material is assumed to be isotropic, homegeneous and thermorheologically simple, which means that the temperature-time equivalence postulate is effective. The stress-strain laws are expressed by relaxation-type hereditary integrals. In spatial and time discritizations, isoparametric quadratic quadrilateral finite elements and linear time variations are adopted. For explicit derivations, the viscoelastic material is assumed to behave standard linear solid in shear and elastically in dilatation. Two-dimensional examples are solved under general temperature distributions T = T(x, t), and compared with other opproximate solutions to show the versatility of the presented analysis.

Probabilistic Fatigue Life Evaluation of Rolling Stock Structures (철도차량 구조물의 확률론적 피로수명 평가)

  • 구병춘;서정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.89-94
    • /
    • 2003
  • Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.