• Title/Summary/Keyword: stress amplitude

Search Result 535, Processing Time 0.022 seconds

Dynamic Behavior of Unsaturated Decomposed Granite Soils under Low Shear Strain Amplitude (저전단변형율에서의 불포화화강풍화토의 동적 거동)

  • Huh, Kyung-Han;Baek, Joong-Yuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.57-63
    • /
    • 2005
  • In case of general structures, it has been known that the strain amplitude band experienced by the base in a state of service load is less than 1% and most of the base show low, strain amplitude behavior less than 0.01%. In this study examining the influence affected to dynamic behavior in a condition of the low strain amplitude of unsaturated decomposed granite soils, the resonant column test, using some samples in Su-won area, has been performed for each degree of saturation resulted from different void ratios and confined stress. It is found out that the minimum value of the damping ratio occurred in roughly $17{\sim}18%$ according to void ratios regardless of confined pressure in the same manner with the case of the maximum shear elastic modulus; and it is estimated that for the influence of surface tension in the optimum degree of saturation, the damping ratio appears to be least.

Damping Property Measurement of Damping Alloy by Dynamic Strain Gage (Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정)

  • Lee, Gyu-Hwan;Jo, Gwon-Gu;Lee, Bong-Jik;Sim, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.502-509
    • /
    • 1994
  • New damping measurement equipment was designed using the dynamic strain gage and high speed analog to digital signal 12 bit converter and compared it with existing equipment. The damping properties of general material and high damping material were also studied by this machine. The SDC (specific damping capacity) was measured with various heat treatment condition, initial vibration amplitude and internal stress. The vibration amplitude of high damping material is decreased within nearly less than 0.4 second after applying the initial forced vibration. But that of general material is still vibrating at the same time. After furnace-cooling heat treatment, SDCmax of Fe-lGwt.%Cr system was more than 40% and that of Fe-5.5wt.%Al alloy was more than 30% after air-cooling heat treatment. Upon increasing of initial vibration amplitude, it is detected the migration of SDCmax into the region of small vibraton amplitude. Damping capacity is decreased rapidly as the internal stress Increases. Damping measurement equipment in the present study was ahln to give the more accurate results of damping properties in the small vibration amplitude region.

  • PDF

Settlement Behavior of Foundation Rubble-mound by Vibro-Compaction (진동다짐에 의한 기초사석의 침하거동)

  • Yoo, Kun-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.127-136
    • /
    • 2011
  • The settlement of a compaction plate resting on the surface of rubble-mound and subjected to a vibrating vertical load can be characterized by a transient amplitude and a plastic settlement. As long as the maximum imposed load does not exceed the bearing capacity of the rubble-mound, plastic settlement will approach an ultimate value and essentially steady-state vibration will ensue. For the settlement behavior by vibro-compaction, most laboratory experiments were conducted on laterally confined samples with loads over the full surface area or on samples placed on a vibrating table. In the field, the loads cover only a small fraction of the surface area. In this study, crushed stones are loaded with the same as field condition. According to the vibro-compaction experiments on crushed stone, it was found that approximately 90% of total settlement occur within 2 minutes and plastic settlement increases with increasing cyclic stress levels including static and dynamic stress. A compaction equation on which the number of load cycles, amplitude of plate, settlement, width of plate, and cyclic stress are related each other is proposed.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao;Jiapei Ma;Jianfeng Xue;Zhiyong Liu;Yingqi Bai
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2023
  • Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Influence of some key factors on material damping of steel beams

  • Wang, Yuanfeng;Pan, Yuhua;Wen, Jie;Su, Li;Mei, Shengqi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.285-296
    • /
    • 2014
  • Material damping affects the dynamic behaviors of engineering structures considerably, but up to till now little research is maintained on influence factors of material damping. Based on the damping-stress function of steel, the material damping of steel beams is obtained by calculating the stress distribution of the beams with an analytical method. Some key influence factors of the material damping, such as boundary condition, amplitude and frequency of excitation, load position as well as the cross-sectional dimension of a steel beam are analyzed respectively. The calculated results show that even in elastic scope, material damping does not remain constant but varies with these influence factors. Although boundary condition affects material damping to some extent, such influence can be neglected when the maximum stress amplitude of the beam is less than the fatigue limit of steel. Exciting frequency, load position and cross-section dimension have great effects on the material damping of the beam which maintain the similar changing trend under different boundary conditions respectively.

A Study on Failure Analysis of Low Pressure Turbine Blade in Nuclear Plant using AFM (AFM을 이용한 발전소용 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Choi, Woo-Sung;Moon, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.61-68
    • /
    • 2001
  • Turbine blade in nuclear plant is subject to cyclic bending fatigue by high steam pressure. Especially, fatigue fracture is caused by low stress below yielding stress. Photograph by SEM doesn't have striation but photograph by AFM has striation on the fatigue fractured surface of 12% Cr steel used in turbine blade. Surface roughness $R_q$ has the linear relation with respect to stress intensity factor range ΔK and is increased linearly according to load amplitude $\textit{\Delta}P$. In this study loading condition applied to turbine blade is predicted by the relation between the gradient of $R_q$ to $\textit{\Delta}K$ and load amplitude $\textit{\Delta}P$.

  • PDF

Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay (재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성)

  • Ishigaki, Shigenao;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng;Yue, Peng;Correia, Jose;Blason, Sergio;De Jesus, Abilio;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.