DOI QR코드

DOI QR Code

Strain energy-based fatigue life prediction under variable amplitude loadings

  • Zhu, Shun-Peng (Institute of Reliability Engineering, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China) ;
  • Yue, Peng (Institute of Reliability Engineering, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China) ;
  • Correia, Jose (INEGI, Faculty of Engineering, University of Porto) ;
  • Blason, Sergio (Department of Construction and Manufacturing Engineering, University of Oviedo) ;
  • De Jesus, Abilio (INEGI, Faculty of Engineering, University of Porto) ;
  • Wang, Qingyuan (Key Laboratory of Deep Earth Science and Engineering, Ministry of Education, Sichuan University)
  • Received : 2017.11.02
  • Accepted : 2018.02.14
  • Published : 2018.04.25

Abstract

With the aim to evaluate the fatigue damage accumulation and predict the residual life of engineering components under variable amplitude loadings, this paper proposed a new strain energy-based damage accumulation model by considering both effects of mean stress and load interaction on fatigue life in a low cycle fatigue (LCF) regime. Moreover, an integrated procedure is elaborated for facilitating its application based on S-N curve and loading conditions. Eight experimental datasets of aluminum alloys and steels are utilized for model validation and comparison. Through comparing experimental results with model predictions by the proposed, Miner's rule, damaged stress model (DSM) and damaged energy model (DEM), results show that the proposed one provides more accurate predictions than others, which can be extended for further application under multi-level stress loadings.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Ministry of Education

References

  1. Aid, A., Bendouba, M., Aminallah, L., Amrouche, A., Benseddiq, N. and Benguediab, M. (2012), "An equivalent stress process for fatigue life estimation under multiaxial loadings based on a new non linear damage model", Mater. Sci. Eng. A, 538, 20-27. https://doi.org/10.1016/j.msea.2011.12.105
  2. Besson, J. (2010), "Continuum models of ductile fracture: A review", Int. J. Dam. Mech., 19(1), 3-52. https://doi.org/10.1177/1056789509103482
  3. Blason, S., Correia, J.A.F.O., De Jesus, A.M.P., Calcada, R. and Fernandez-Canteli, A. (2016), "A probabilistic analysis of Miner's law for different loading conditions", Struct. Eng. Mech., 60(1), 71-90. https://doi.org/10.12989/sem.2016.60.1.071
  4. Carpinteri, A., Spagnoli, A. and Vantadori, S. (2003), "A multiaxial fatigue criterion for random loading", Fatig. Fract. Eng. Mater. Struct., 26(6), 515-522. https://doi.org/10.1046/j.1460-2695.2003.00620.x
  5. Chaboche, J.L. and Lesne, P.M. (1988), "A non-linear continuous fatigue damage model", Fatig. Fract. Eng. Mater. Struct., 11(1), 1-17. https://doi.org/10.1111/j.1460-2695.1988.tb01216.x
  6. Correia, J., Apetre, N., Arcari, A., De Jesus, A., Muniz-Calvente, M., Calcada, R., Berto, F. and Fernandez-Canteli, A. (2017), "Generalized probabilistic model allowing for various fatigue damage variables", Int. J. Fatig., 100, 187-194. https://doi.org/10.1016/j.ijfatigue.2017.03.031
  7. Correia, J.A.F.O., De Jesus, A.M.P., Fernandez-Canteli, A. and Calcada, R.A.B. (2015), "Fatigue damage assessment of a riveted connection made of puddle iron from the Fao bridge using the modified probabilistic interpretation technique", Proc. Eng., 114, 760-767. https://doi.org/10.1016/j.proeng.2015.08.023
  8. Correia, J.A.F.O., Raposo, P., Muniz-Calvente, M., Blason, S., Lesiuk, G., De Jesus, A., Moreira, P., Calcada, R., Canteli, A. (2017), "A generalization of the fatigue Kohout-Vechet model for several fatigue damage parameters", Eng. Fract. Mech., 185, 284-300. https://doi.org/10.1016/j.engfracmech.2017.06.009
  9. Correia, J.A.F.O., De Jesus, A.M.P. and Fernandez-Canteli, A. (2013), "Local unified probabilistic model for fatigue crack initiation and propagation: Application to a notched geometry", Eng. Struct., 52, 394-407. https://doi.org/10.1016/j.engstruct.2013.03.009
  10. Dai, J., Das, D. and Ohadi, M. (2013), "Reliability risk mitigation of free air cooling through prognostics and health management", Appl. Energy, 111, 104-112. https://doi.org/10.1016/j.apenergy.2013.04.047
  11. Dattoma, V., Giancane, S., Nobile, R. and Panella, F.W. (2006), "Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model", Int. J. Fatig., 28(2), 89-95. https://doi.org/10.1016/j.ijfatigue.2005.05.001
  12. Djebli, A., Aid, A., Bendouba, M., Amrouche, A., Benguediab, M. and Benseddiq, N. (2013), "A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy", Int. J. Non-Lin. Mech., 51, 145-151. https://doi.org/10.1016/j.ijnonlinmec.2013.01.007
  13. Fatemi, A. and Yang, L. (1998), "Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials", Int. J. Fatig., 20, 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9
  14. Fernandez-Canteli, A., Blason, S., Correia, J.A.F.O. and De Jesus A.M.P. (2014), "A probabilistic interpretation of the miner number for fatigue life prediction", Fratt. Integrita Strutturale, 30, 327-339.
  15. Freudenthal, A.M. and Heller, R.A. (1959), "On stress interaction in fatigue and cumulative damage rule", J. Aerosp. Sci., 26(7), 431-442. https://doi.org/10.2514/8.8131
  16. Garcia, S., Amrouche, A., Mesmacque, G., Decoopman, X. and Rubio, C. (2005), "Fatigue damage accumulation of cold expanded hole in aluminum alloys subjected to block loading", Int. J. Fatig., 27(10-12), 1347-1353. https://doi.org/10.1016/j.ijfatigue.2005.06.040
  17. Gathercole, N., Adam, T., Reiter, H. and Harris, B. (1994), "Life prediction for fatigue of T800/5245 carbon-fiber composites. 1. constant-amplitude loading", Int. J. Fatig., 16(8), 523-532. https://doi.org/10.1016/0142-1123(94)90478-2
  18. Giancane, S., Nobile, R., Panella, F.W. and Dattoma, V. (2010), "Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model", Proc. Eng., 2(1), 1317-1325. https://doi.org/10.1016/j.proeng.2010.03.143
  19. Hu, D., Wang, R., Fan, J. and Shen, X. (2012), "Probabilistic damage tolerance analysis on turbine disk through experimental data", Eng. Fract. Mech., 87, 73-82. https://doi.org/10.1016/j.engfracmech.2012.03.008
  20. Hu, D., Ma, Q., Shang, L., Gao, Y. and Wang, R. (2016), "Creepfatigue behavior of turbine disc of superalloy GH720Li at 650 C and probabilistic creep-fatigue modeling", Mater. Sci. Eng. A, 670, 17-25. https://doi.org/10.1016/j.msea.2016.05.117
  21. Huffman, P.J. and Beckman, S.P. (2013), "A non-linear damage accumulation fatigue model for predicting strain life at variable amplitude loadings based on constant amplitude fatigue data", Int. J. Fatig., 48, 165-169. https://doi.org/10.1016/j.ijfatigue.2012.10.016
  22. Huffman, P.J., Ferreira, J. and Correia, J. (2017), "Fatigue crack propagation prediction of a pressure vessel mild steel based on a strain energy density model", Fract. Struct. Integr., 42, 74-84.
  23. Ince, A. and Glinka, G. (2011), "A modification of Morrow and Smith-Watson-Topper mean stress correction models", Fatig. Fract. Eng. Mater. Struct., 34(11), 854-867. https://doi.org/10.1111/j.1460-2695.2011.01577.x
  24. Ince, A. and Glinka, G. (2014), "A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings", Int. J. Fatig., 62, 34-41. https://doi.org/10.1016/j.ijfatigue.2013.10.007
  25. Ince, A. (2017a), "A generalized mean stress correction model based on distortional strain energy", Int. J. Fatig., 104, 273-282. https://doi.org/10.1016/j.ijfatigue.2017.07.023
  26. Ince, A. (2017b), "A mean stress correction model for tensile and compressive mean stress fatigue loadings", Fatig. Fract. Eng. Mater. Struct., 40(6), 939-948. https://doi.org/10.1111/ffe.12553
  27. Kamaya, M. and Kawakubo, M. (2015), "Loading sequence effect on fatigue life of Type 316 stainless steel", Int. J. Fatig., 81, 10-20. https://doi.org/10.1016/j.ijfatigue.2015.07.009
  28. Kujawski, D. (2014), "A deviatoric version of the SWT parameter", Int. J. Fatig., 67, 95-102. https://doi.org/10.1016/j.ijfatigue.2013.12.002
  29. Knop, M., Jones, R. and Molent, L. (2000), "On the Glinka and Neuber methods for calculating notch tip strains under cyclic load spectra", Int. J. Fatig., 22(9), 743-755. https://doi.org/10.1016/S0142-1123(00)00061-X
  30. Lagoda, T., Macha, E. and Nieslony, A. (2005), "Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading", Fatig. Fract. Eng. Mater. Struct., 28(4), 409-420. https://doi.org/10.1111/j.1460-2695.2005.00877.x
  31. Lv, Z., Huang, H.Z., Zhu, S.P., Gao, H. and Zuo, F. (2014), "A modified nonlinear fatigue damage accumulation model", Int. J. Dam. Mech., 24(2), 168-181. https://doi.org/10.1177/1056789514524075
  32. Manson, S.S., Freche, J.C. and Ensign, C.R. (1967), "Application of a double linear damage rule to cumulative fatigue", ASTM STP, 415, 384-412.
  33. Manson, S.S. and Halford, G.R. (1981), "Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage", Int. J. Fract., 17(2), 169-192. https://doi.org/10.1007/BF00053519
  34. Meneghetti, G. (2007), "Analysis of the fatigue strength of a stainless steel based on the energy dissipation", Int. J. Fatig., 29(1), 81-94. https://doi.org/10.1016/j.ijfatigue.2006.02.043
  35. Mesmacque, G., Garcia, S., Amrouche, A. and Rubio-Gonzalez, C. (2005), "Sequential law in multiaxial fatigue, a new damage indicator", Int. J. Fatig., 27(4), 461-467. https://doi.org/10.1016/j.ijfatigue.2004.08.005
  36. Miner, M.A. (1945), "Cumulative damage in fatigue", J. Appl. Mech., 67, A159-A164.
  37. Noguchi, H., Kim, Y.H. and Nisitani, H. (1995), "On the cumulative fatigue damage in short carbon fiber reinforced poly-ether-ether-ketone", Eng. Fract. Mech., 51(3), 457-465. https://doi.org/10.1016/0013-7944(94)00282-M
  38. Pavlou, D.G. (2002), "A phenomenological fatigue damage accumulation rule based on hardness increasing for the 2024-T42 aluminum", Eng. Struct., 24, 1363-1368. https://doi.org/10.1016/S0141-0296(02)00055-X
  39. Pavlou, D.G. (2000), "Prediction of fatigue crack growth under real stress histories", Eng. Struct., 22(12), 1707-1713. https://doi.org/10.1016/S0141-0296(99)00069-3
  40. Pavlou, D.G., Vlachakis, N.V. and Pavlou, M.G. (2004), "Estimation of fatigue crack growth retardation due to crack branching", Comput. Mater. Sci., 29(4), 446-452. https://doi.org/10.1016/j.commatsci.2003.12.003
  41. Peng, W., Li, Y.F., Yang, Y.J., Zhu, S.P. and Huang, H.Z. (2016), "Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas", IEEE Trans. Reliab., 65(2), 624-639. https://doi.org/10.1109/TR.2015.2513038
  42. Rege, K. and Pavlou, D.G. (2017), "A one-parameter nonlinear fatigue damage accumulation model", Int. J. Fatig., 98, 234-246. https://doi.org/10.1016/j.ijfatigue.2017.01.039
  43. Sanches, R.F., De Jesus, A.M.P. and Correia, J.A.F.O. (2015), "A probabilistic fatigue approach for riveted joints using Monte Carlo simulation", J. Constr. Steel Res., 110, 149-162. https://doi.org/10.1016/j.jcsr.2015.02.019
  44. Siriwardane, S., Ohga, M., Dissanayake, R. and Taniwaki, K. (2008), "Application of new damage indicator-based sequential law for remaining fatigue life estimation of railway bridges", J. Constr. Steel Res., 64(2), 228-237. https://doi.org/10.1016/j.jcsr.2007.06.002
  45. Sun, Q., Dui, H.N. and Fan, X.L. (2014), "A statistically consistent fatigue damage model based on Miner's rule", Int. J. Fatig., 69, 16-21. https://doi.org/10.1016/j.ijfatigue.2013.04.006
  46. Taheri, S., Vincent, L. and Le-roux, J.C. (2013), "A new model for fatigue damage accumulation of austenitic stainless steel under variable amplitude loading", Proc. Eng., 66, 575-586. https://doi.org/10.1016/j.proeng.2013.12.109
  47. Wang, R., Liu, X. and Hu D. (2017), "Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification", Aerosp. Sci. Technol., 70, 300-309. https://doi.org/10.1016/j.ast.2017.08.011
  48. Wang, R.Z., Zhang, X.C., Tu, S.T., Zhu, S.P. and Zhang, C.C. (2016), "A modified strain energy density exhaustion model for creep-fatigue life prediction", Int. J. Fatig., 90, 12-22. https://doi.org/10.1016/j.ijfatigue.2016.03.005
  49. Wu, S.C., Zhang, S.Q., Xu, Z.W., Kang, G.Z. and Cai, L.X. (2016), "Cyclic plastic strain based damage tolerance for railway axles in China", Int. J. Fatig., 93, 64-70. https://doi.org/10.1016/j.ijfatigue.2016.08.006
  50. Ye, D. and Wang, Z. (2001), "A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue", Int. J. Fatig., 23(8), 679-687. https://doi.org/10.1016/S0142-1123(01)00027-5
  51. Yu, Z.Y., Zhu, S.P., Liu, Q. and Liu, Y. (2017a), "A new energycritical plane damage parameter for multiaxial fatigue life prediction of turbine blades", Mater., 10(5), 513. https://doi.org/10.3390/ma10050513
  52. Yu, Z.Y., Zhu, S.P., Liu, Q. and Liu, Y. (2017b), "Multiaxial fatigue damage parameter and life prediction without any additional material constan ts", Mater., 10(8), 923. https://doi.org/10.3390/ma10080923
  53. Yuan, X., Yu, W., Fu, S., Yu, D. and Chen, X. (2016), "Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel", Mater. Sci. Eng. A, 677, 193-202. https://doi.org/10.1016/j.msea.2016.09.053
  54. Zhu, S.P., Huang, H.Z., Ontiveros, V., He, L.P. and Modarres, M. (2012), "Probabilistic low cycle fatigue life prediction using an energy-based damage parameter and accounting for model uncertainty", Int. J. Dam. Mech., 21(8), 1128-1153. https://doi.org/10.1177/1056789511429836
  55. Zhu, S.P., Huang, H.Z., Liu, Y., Yuan, R. and He, L.P. (2013), "An efficient life prediction methodology for low cycle fatigue-creep based on ductility exhaustion theory", Int. J. Dam. Mech., 22(4), 556-571. https://doi.org/10.1177/1056789512456030
  56. Zhu, S.P., Lei, Q., Huang, H.Z. and Yang, Y.J. (2016), "Mean stress effect correction in strain energy-based fatigue life prediction of metals", Int. J. Dam. Mech., 26(8), 1219-1241.
  57. Zhu, S.P., Yue, P., Yu, Z.Y. and Wang, Q. (2017), "A combined high and low cycle fatigue model for life prediction of turbine blades", Mater., 10(7), 698. https://doi.org/10.3390/ma10070698
  58. Zhu, S.P., Yang, Y.J., Huang, H.Z., Lv, Z. and Wang, H.K. (2017), "A unified criterion for fatigue-creep life prediction of high temperature components", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(4), 677-688. https://doi.org/10.1177/0954410016641448
  59. Zhu, S.P., Huang, H.Z. and Wang Z.L. (2011), "Fatigue life estimation considering damaging and strengthening of low amplitude loads under different load sequences using fuzzy sets approach", Int. J. Dam. Mech., 20(6), 876-899. https://doi.org/10.1177/1056789510397077
  60. Zhu, S.P., Huang, H.Z., Peng, W., Wang H.K. and Mahadevan, S. (2016), "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty", Reliab. Eng. Syst. Safety, 146, 1-12. https://doi.org/10.1016/j.ress.2015.10.002
  61. Zhu, S.P., Foletti, S. and Beretta, S. (2017), "Probabilistic framework for multiaxial LCF assessment under material variability", Int. J. Fatig., 103, 371-385. https://doi.org/10.1016/j.ijfatigue.2017.06.019
  62. Zhu, S.P., Lei, Q. and Wang, Q.Y. (2017), "Mean stress and ratcheting corrections in fatigue life prediction of metals", Fatig. Fract. Eng. Mater. Struct., 40(9), 1343-1354. https://doi.org/10.1111/ffe.12569
  63. Zhu, S.P., Liu, Q., Zhou, J. and Yu, Z.Y. (2018), "Fatigue reliability assessment of turbine discs under multi-source uncertainties", Fatig. Fract. Eng. Mater. Struct., In Press.
  64. Zhu, S.P., Liu, Q., Lei, Q. and Wang, Q.Y. (2018), "Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations", Int. J. Dam. Mech., In Press.

Cited by

  1. Strain energy-based multiaxial fatigue life prediction under normal/shear stress interaction vol.28, pp.5, 2018, https://doi.org/10.1177/1056789518786031