• Title/Summary/Keyword: stress/strain effect

Search Result 1,395, Processing Time 0.029 seconds

Molecular Modeling of Bisphenol-A Polycarbonate and Tetramethyl Bisphenol-A Polycarbonate

  • Kim, Sangil;Juwhan Liu
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.129-142
    • /
    • 2001
  • To efficiently demonstrate the molecular motion, physical properties, and mechanical properties of polycarbonates, we studied the differences between bisphenol-A polycarbonate(BPA-PC) and tetramethyl bisphenol-A-polycarbonate(TMBPA-PC) using molecular modeling techniques. To investigate the conformations of BPA-PC and TMBPA-PC and the effect of the conformation on mechanical properties, we performed conformational energy calculation, molecular dynamics calculation, and stress-strain curves based on molecular mechanics method. From the result obtained from conformational energy calculations of each segment, the molecular motions of the carbonate and the phenylene group in BPA-PC were seen to be more vigorous and have lower restriction to mobility than those in TMBPA-PC, respectively. In addition, from the results of radial distribution function, velocity autocorrelation function, and power spectrum, BPA-PC appeared to have higher diffusion constant than TMBPA-PC and is easier to have various conformations because of the less severe restrictions in molecular motion. The result of stress-strain calculation for TMBPA-PC seemed to be in accordance with the experimental value of strain-to-failure ∼4%. From these results of conformational energy calculations of segments, molecular dynamics, and mechanical properties, it can be concluded that TMBPA-PC has higher modulus and brittleness than BPA-PC because the former has no efficient relaxation mode against the external deformations.

  • PDF

Dynamic Effects for Crushing Strength of Rectangular Tubular Members (사각 튜브 부재의 압괴강도에 대한 동적 영향 평가)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 1990
  • When a thin walled member is subjected to compression in a condition such as collision, the energy is mainly absorbed by axial crumpling. In this case, dynamic crushing strength of the member is increased due to the effects of strain-rate compared with the static strength, even though the inertia effect is neglected. In this paper, the method of predicting the static crushing for tubular members is presented using the kinematic method of plasticity. Since, a predicted crushing load, taking account of the dynamic yield stress, usually overestimates the effects of strain-rate, the average plastic flow stress for the effects of strain-rate is used to obtain the dynamic crushing load for tubular members. The analytical results are compared with the experiments published in references, and a good correlation is observed.

  • PDF

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

The Kinematics of Damage for Elasto-Plastic Large Deformation (탄소성 대변형 거동에서의 손상의 운동학)

  • Park, Tae hyo;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.401-419
    • /
    • 1997
  • In this paper the kinematics of damage for finite strain, elasto-plastic deformation is introduced using the fourth-order damage effect tensor through the concept of the effective stress within the framework of continuum damage mechanics. In the absence of the kinematic description of damage deformation leads one to adopt one of the following two different hypotheses for the small deformation problems. One uses either the hypothesis of strain equivalence or the hypotheses of energy equivalence in order to characterize the damage of the material. The proposed approach in this work provides a general description of kinematics of damage applicable to finite strains. This is accomplished by directly considering the kinematics of the deformation field and furthermore it is not confined to small strains as in the case of the strain equivalence or the strain equivalence approaches. In this work, the damage is described kinematically in both the elastic domain and plastic domain using the fourth order damage effect tensor which is a function of the second-order damage tensor. The damage effect tensor is explicitly characterized in terms of a kinematic measurure of damage through a second-order damage tensor. Two kinds of second-order damage tensor representations are used in this work with respect to two reference configurations.

  • PDF

V-Factor Estimation Under Thermal and Mechanical Stress for Circumferentially Cracked Cylinder (열하중 및 기계하중이 작용하는 원주 방향 균열 배관에 대한 V-계수 평가)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1123-1131
    • /
    • 2008
  • This paper provides V-factor estimation under combined mechanical and thermal load for circumferential cracks. Results are based on finite element analyses and effect of types and magnitudes of the thermal stress, crack geometry, the loading mode and plastic strain hardening on variations of the V-factor are investigated. The results of finite element analyses are compared with R6 values. As a result, it is shown that R6 gives generally conservative results. The conservatism is especially increased for the combination of large mechanical and thermal load. As a result, new estimation method which uses failure assessment line in R6 is proposed for V-factor and gives less conservative results.

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method (RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Choi, Jun-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

Effect of soil overburden pressure on mechanical properties of carbon FRP strips

  • Toufigh, Vahid;Bilondi, Meysam Pourabbas;Tohidi, Farshid
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.637-643
    • /
    • 2017
  • Carbon fiber reinforced polymers (CFRPs) have been recently investigated as an alternative material for Geosynthetics to improve soil properties. One of the factors influencing the fiber orientation and mechanical properties of CFRP is the effect of soil overburden pressure. This study investigates the tensile behavior of cast-in-place CFRP. During the curing time of specimens, a wide range of normal stress is applied on specimens sandwiched between the soils. Two different soil types are used to determine the effect of soil grain size on the mechanical properties of CFRP. Specimens are also prepared with different specifications such as curing time and mixing soil in to the epoxy. In this study, tensile tests are conducted to investigate the effect of such parameters on tensile behavior of CFRP. The experimental results indicate that by increasing the normal stress and soil grain size, the ultimate tensile strength and the corresponding strain of CFRP decrease; however, reduction in elastic modulus is not noticeable. It should be noted that, increasing the curing period of epoxy resin and mixing soil in to the epoxy have no significant effect on the tensile properties of CFRP.

Strength Characteristic of Waste Fishing Net-added Lightweight Soil Considering Glue Treatment (본딩효과를 고려한 폐어망 보강 경량토의 압축강도 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.39-45
    • /
    • 2012
  • This paper investigates the strength characteristics and stress-strain behaviors of waste fishing net (WFN)-added lightweight soil. The lightweight soil, which consisted of dredged soil, crumb rubber, and cement, was reinforced with WFN in order to increase its shear strength. Glue treated WFN was also added to lightweight soil to improve the interlocking between the soil mixture and WFN. Three kinds of test specimens were prepared: unreinforced lightweight soil, reinforced lightweight soil without glue treatment, and reinforced lightweight soil with glue treatment. Several series of laboratory tests were carried out, including flow value tests, unconfined compression tests, and SEM analyses. From the experimental results, it was found that the peak strength of the reinforced lightweight soil with glue treatment was increased by the increased interlocking between the soil mixture and WFN, which was induced from the bonding effect. The stress-strain relation of the reinforced lightweight soil, irrespective of the glue treatment, showed a more ductile behavior than that of the unreinforced lightweight soil.