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ABSTRACT : In this paper the kinematics of damage for finite strain,
elasto-plastic deformation is introduced using the fourth-order damage effect
tensor through the concept of the effective stress within the framework of
continuum damage mechanics. In the absence of the kinematic description of
damage deformation leads one to adopt one of the following two different
hypotheses for the small deformation problems. One uses either the
hypothesis of strain equivalence or the hypotheses of energy equivalence in
order to characterize the damage of the material. The proposed approach in
this work provides a general description of kinematics of damage applicable
to finite strains. This is accomplished by directly considering the kinematics
of the deformation field and furthermore it is not confined to small strains as
in the case of the strain equivalence or the strain equivalence approaches. In
this work. the damage is described kinematically in both the elastic domain
and plastic domain using the fourth order damage effect tensor which is a

function of the second-order damage tensor. The damage effect tensor is
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explicitly characterized in terms of a kinematic measurure of damage through

a second-order damage tensor. Two kinds of second-order damage tensor

representations are used in this work with respect to two reference

configurations.
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1. Introduction

In 1958, Kachanov (1) introduced the
concept of effective stress in damaged
materials. This pioneering work started
the subject that is now known as
continuum damage mechanics. Research in
this area has steadily grown and reached
a stage that warrants its use in today’s
engineering  applications. Continuum
damage mechanics is now widely used in
different areas including brittle failure
(Krajcinovic ~ (2.3),  Krajcinovic  and
Foneska (4), Lubarda et al. (5], Ju and
Lee (6), ductile failure (Lemaitre (7,8),
Chaboche (9.10,11,12), Chow and Wang
'13)). composite materials (Allen et al.
{14]. Boyd et al. [15]), Voyiadjis and
Kattan [16). Voyiadjis and Park (17,18)
and fatigue (Chow and Wei [(19],
Voyiadjis and Echle (20)). In this theory,
a continuous damage variable is defined
and used to represent degradation of the
material which reflects various types of
damage

at the micro-scale level like nucleation
and growth of voids, cavities, micro-crack,
defects.In

and other microscopic

continuum damage mechanics, the
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elast-plastic deformation, finite strain, continuum mechanics,

effective stress tensor is wusually not
symmetric. This leads to a complicated
theory of damage mechanics involving
micropolar media and the Cosserat
continuum. Therefore, to avoid such a
theory, symmetrization of the effective
stress tensor is used to formulate a
continuum damage theory in the classical
sense (Lee et al. (21), Sidoroff [(22].
Cordebois and Sidoroff (23), Murakami
and Ohno (24), Betten (25), and Lu and
Chow (26)). Recently, Voyiadjis and Park
(27) reviewed a linear transformation
tensor, defined as a fourth-order damage
effect tensor and focused on its geometric
symmetrization method in order to
describe the kinematics of damage using
the second-order damage tensor. Park and
Voyiadjis (28) introduced the kinematics
of damage in the finite deformation field
using the damage effect tensor which does
not only symmetrize the effective stress
tensor but can also be related to the
deformation gradient of damage.

The kinematics of damage is described
here wusing the second-order damage
tensor. The deformation gradient of
damage is defined using the second-order
damage tensor. The Green deformation
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tensor of the damage elasto-plastic

deformation is also derived.

2. Theoretically Preliminares

A continuous body in an initial

undeformed configuration that consists of
the material volume £° is denoted by

C’. while the elasto-plastic damage
deformed configuration at time t after the
body is subjected to a set of external
denoted by C'. The

corresponding material volume at time, ¢

agencies is

is denoted by £'. Upon elastic unloading

from the configuration C' an intermediate

stress free configuration is denoted by

C”. In the framework of continuum
damage mechanics a number of fictitious
configurations, based on the effective
stress concept, are assumed that are
obtained by fictitiously removing all the
damage that the body has undergone.
Thus the fictitious configuration of the

body denoted by C' is obtained from C'
by fictitiously removing all the damage
that the body has undergone at C'. Also
the fictitious configuration denoted by
C" is assumed which is obtained from
C" by fictitiously removing all the
damage that the body has undergone at

C*. While the configuration —C—‘f is the

intermediate configuration upon unloading

from the configuration C'. The initial
undeformed body may have a pre-existing

damage state. The initial fictitious

M 9P 3% 19974 9¥

effective configuration denoted by T s
defined by removing the initial damage
from the initial undeformed configuration
of the body. In the case of no initial
damage existing in the undeformed body,
the initial fictitious effective configuration
is identical to the initial undeformed
configuration. Cartesian tensors are used
in this work and the tensorial index
notation is employed in all equations. The
tensors used in the text are denoted by
boldface letters. However, superscripts in
the notation do not indicate tensorial
index but merely stand for corresponding
deformation configurations such as "€” for
elastic, "p” for plastic. and "d” for damage
etc. The barred and tilded notations refer
to the fictitious effective configurations

3. Description of Damage State

The damage state can be described
using an even order tensor (Leckie (29).
Onat (30) and Betten (31)). Ju {(32)
pointed out that even for isotropic damage
one should employ a damage tensor(not a
scalar damage variable) to characterize
the state of damage in materials.

However, the damage generally is
anisotropic due to the external agency
condition or the material nature itself.
Although the fourth-order damage tensor
can be used directly as a linear
transformation tensor to define the
effective stress” tensor, it is not easy to
characterize physically the fourth-order
damage tensor compared to the

second-order damage tensor. In this work.
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the damage is considered as a symmetric
second-order tensor. However, damage
tensor for the finite elasto-plastic
deformation can be defined in two

reference systems (33). The first one is
denoted by @

representing the damage state with

the damage tensor

respect to the current damaged

configuration, ‘C'. Another one is denoted

by ¢ and is representing the damage
state with respect to the elastically

. —di
unloaded damage configuration, c”.
Both are given by Murakami (34) as

follows

b= ‘Z; ak ;2,.. ;t,-a (no sum in k) (1)
and

gyi= g 9 m;* m,;* (no sum in k) (2)

A~k ~

where n and mk are eigenvectors

corresponding to the eigenvalues, 9, and

®, of the damage tensors, ¢ and ¢,

respectively. Equations (1) and (2) can be
written alternatively as follows

$i=0bibid (3)
and
‘/’ﬁz Cz'rc;‘s,‘}rs 4)

The damage tensors in the coordinate
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system that coincides with the three

orthogonal principal directions of the

damage tensors, @n " and 3,5 in

"equations (3) and (4) are obviously of

diagonal form and are given by

[ ¢ 0 01|
d.=| 0 d; 0| (5)
0 0 ¢4
9, 0 0
Pi=| 0 9y 0 (6)
0 0 ¢y

and the second order transformation

tensors. b and c are given by

n Ny ny
bxr= n12 n22 nSZ (7
|
ny ! ”23 ny ! }
my  my' oma |
b,,z WL12 my msy (8)
m, ms ms

The relation between the damage tensors

¢ and ¢ is shown in section 5.

4. Fourth-Order Anisotropic Damage
Effect Tensor

In a general state of deformation and
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damage, the effective stress tensor o is.

related to the Cauchy stress tensor o by

the following linear transformation
(Murakani and Ohno (24))
0= Mo, (9)

where M is a fourth-order linear
transformation operator called the damage
effect tensor. Depending on the form used

for M, it is very clear from equation (9)

that the effective stress tensor o is

generally nonsymmetric. Using a
non-symmetric effective stress tensor as
given by equation (9) to formulate a
constitutive model will result in the
introduction of the Cosserat and a
micropolar continua. However, the use of
such complicated mechanics can be easily
avoided if the proper fourth-order linear
transformation tensor is formulated in
order to symmetrize the effective stress
tensor. Such a linear transformation
tensor called the damage effect tensor is
obtained in the literature [(8.21) using
symmetrization methods.

One of the symmetrization methods
given by Cordebois and Sidoroff (35) and

Lee et al. (21) is expressed as follows
05 = (8a— o) 20 ( 85— ) (10)
The fourth-order damage effect tensors

corresponding to equations (10) is defined
such that

My = (31‘/:—4’;‘&)_1/2(5,‘1—(1’;’1)”1/2 (11)
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In order to describe the kinematics of
damage, the physical meaning of the
fourth-order damage effect tensor should
be interpreted and not merely given as
the symmertrization of the effective
stress. In this work, the fourth-order
damage effect tensor given by equation
(11) will be wused because of its
geometrical symmetrization of the
effective stress (35). However, it is very

difficult to obtain the explicit

(84— dw) 2. The

explicit representation of the fourth-order

representation  of

damage effect tensor M using the

second-order damage tensor ¢ is of
particular importance in the
implementation of the constitutive
modeling of damage mechanics. Therefore,
the damage effect tensor M equation (11)
should be obtained using the coordinate
transformation of the principal damage
direction coordinate system. Thus the
fourth-order damage effect tensor given by
equation (11) can be written as follows

(Voyiadjis and Park (27))

Mt = bibyibpiboy M g (12)

where M is a fourth-order damage
effect tensor ‘ with reference to the
principal damage direction coordinate

system. The fourth-order damage effect
tensor M can be written as follows

(Voyiadjis and Park (27))

M opnpe= G Gy (13)

405



where the second-order tensor a in the

principal damage direction coordinate 5. The Kinematics of Large Deformation
system is given by with Damage
_1 hs . . .
Gy =[Omg— Bmg] 2 A position of a particle in C° at # is
i denoted by X and can be defined at its
e 0 0
1-4, corresponding position in C' at 1,
= 1
- 0 Vi—¢, 0 (14) denoted by x. Futhermore, assuming that
1 the deformation is smooth regardless of
0 0 -VT-_'¢—3 g

damage, one can assume a one-to-one

mapping such that

Substituting equation (13) into equation

(12), one obtains the following relation =X, ) (18)
or
My = byi by by by @y ang Xe=X(2, 9 (19)
(15)
=agaj

The corresponding deformation gradient

is expressed as follows
Using equation (15), a second-order
. _ oxi
tensor a is defined as follows F;y—‘_an (20)

and the change in the squared length of a

@ik = Omibpk @y (16) material filament dX is used as a

measure of deformation such that

The matrix form of equation (16) is as (ds)®—(dS)? = dy;dy,— dXdX,

follows (Voyiadjis and Park (27)) (21)
=2E; dX;dX;
[al=[8]" [a] [b) or
(ds)*— (dS)*=2¢,;dx; dx, (22)
amn
I h,b, N h,b,, N by, h\b, N h,b,, R b, b, h, n ___‘/):,b “h” ]
(B S T SN Y [ N [ S (e SN RN Y
| by, N h. b, h..by, b.b,, N h,.by, b..b,, b.h, hy,h.. h,, /’u
N S [ A o SN I Sl S S S T S (i
Irnl)” N h,h,, l)“lv” b.h, . bnb_,l N h.b,, h”h” bb,. ., h b,
T [ SN SN B S /B S (B SN e e
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where (ds5)> and (dS)? the squared
lengths of the material filaments in the
deformed with damage configuration C',

and the initial undeformed configuration

C®. respectively. E and & are the
Lagrngian and Eulerian strain tensors

respectively and are given by

E,‘,’ =-%—[F,,,F,,,-—6,,]
(23)
= %(Cij_aii)
&y =518~ Fi'Fi'] o
z%(aij_BEl)

where C and B are the right
Cauchy-Green and the left Cauchy-Green
tensors, respectively. '

The velocity vector field in the current
configuration at time t is given by

_ (i

The velocity gradient in the current

configuration at time t is given by

Jv .
L, = ax;

= F, F, ! (26)

:Dzi+ VVZ}‘

where the dot designates the material

time derivative and where D and W are

X 9¥ 3% 1997 93

the rate of deformation (stretching) and
the vorticity, respectively. The rate of
deformation, D is equal to the symmetric
part of the velocity gradient L while the
vorcity, W is the antisymmetric part of
the velocity gradient L such that

D,’,’= (LU+LII) (27)

W=+ (L;—Lj) (28)

Strain rate measures are obtained by
differentiating equations (21) and (22)
such that

L[ (a9~ (dS)?] = 24X,k dX;
= ZdXiDiidxi
(29)
= ZdXiFlkDi)'F;dem

= 2dx;[ £;+ exly+ Lasyldx,
By comparing the first equation and the

third of equation (29) one obtains the
rate of the Lagrangian strain that is the

projection of D onto the reference frame
as follows

E ;= FyDyF, (30)

while the deformation rate D is equal to
the Cotter-Rivin convected rate of the

Eulerian strain as follows
D,}z E‘,‘j‘{" eichki+LiI¢£k) (31)
The convected derivative shown in
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equation (31) can also be interpreted as

the Lie derivative of the Eulerian strain
([361).

5.1 A Multiplicative Decomposition

A schematic drawing representing the

kinematics of  elasto-plastic damage

deformation is shown in Figure 1. C is
the initial undeformed configuration of the

body which may have an initial damage in

the material. C' represents the current
elasto-plastically deformed and damaged

configuration of the body. The

configuration Z‘U represents the initial
configuration of the body that is obtained

by fictitiously removing the initial damage
from the C' configuration. If the initial
configuration is undamaged consequently
between

there is no difference

. . —0 i .
configurations C” and C . Configuration

C' is obtained by fictitiously removing

the damage from configuration C'.

Configuration C% is an intermediate
configuration upon elastic unloading. In
the most general case of large deformation
processes, damage may be involved due to
void and microcrack development because
of external agencies. Although damage in
the microlevel is a material discontinuity,
damage can be considered as an
irreversible deformation process in the
framework of Continuum Damage
Mechanics. Furthermore, one assumes
that upon unloading from the

elasto-palstic damage state. the elastic
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part of the deformation can be completely
recovered while no additional plastic
deformation and damage takes place.
Thus upon unloading the elasto-plastic

" 4 &
/1 l 4
P (

Fig 5.1 Schematic representation of elasto-plastic damage
deformation configurations

damage deformed body from the current

configuration C' will elastically unload

to an intermediate stress free

configuration denoted by C% as shown in
Fig 1. Although the damage process is an
irreversible deformation hermodynamically

however, deformation due to damage
itself can be partially or completely
recovered upon unloading due to closure
of  micro-cracks or contraction of
micro-voids. Nevertheless, recovery of
damage deformation does not mean the
healing of damage. No materials are
brittle or ductile. The

gradient tensor and the Green

deformation

deformation tensor of the elasto-plastic
damage deformation can be obtained
through Path 1. Path 11 or Path III as



shown in Figure 1. Considering Path I the
deformation gradient referred to the

undeformed configuration, C® is denoted

by F and is polarly decomposed into the

elastic deformation gradient denoted by
F* and the damage-plastic deformation

gradient denoted by F%such that
Fy=F4F3 (32)

The elastic deformation gradient is

given by
0x;
Fi= : (33)
ij ax;l'b
The corresponding damage-plastic

deformation gradient is given by

dp __ YA
Fi=73x,

(34)
The Right Cauchy G..en deformation

tensor, C, is given by
C;=F&FyFe, F® (35)

The finite deformation damage models
by Ju (37) and Zbib (38) emphasize that
“added flexibility” due to the existence of
microcracks or microvoids is already
embedded in the deformation gradient
implicity. Murakami [(33) presented the
kinematics of damage deformation using
the second-order damage tensor. However,
the lack of an explicit formulation for the

H 9N 3% 19974 9%

kinematics of finite deformation with
damage leads to the failure in obtaining
an explicit derivation of the kinematics
that  directly

deformation. Although most finite strain

consider the damage

elasto-plastic deformation processes
involve damage such as micro-voids,
nucleations and micro-crack development
due to external agencies, however, only
the elastic and plastic deformation
processes are cosidered kinematically due
to the complexity in the involvement of
damage deformation. In this work. the
kinematics of damage will be explicitely
characterized based on continuum damage
mechanics. The  elastic  deformation
gradient corresponds to elastic stretching
and rigid body rotations due to both
internal and external constraints. The
plastic deformation gradient is arising
from purely irreversible processes due to
dislocations in the material. Damage may
be initiated and evolves in both the
elastic and plastic deformation processes.
elastic

Particularly, damage in the

deformation state is termed elastic
damage which is the case for most brittle
materials while damage in the plastic
deformation state is termed plastic
damage which is mainly for ductile
materials. Additional deformation due to
damage consists of damage itself with
additional deformation due to elastic and
plastic deformation. This causes loss of
elastic and plastic stiffness. In this work,
kinematics of damage deformation is
completely described for both damage and

the coupling of damage with elasto-plastic
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deformation. The total Lagrangian strain
tensor is expressed as follows

Eif = _ZL(FV]?F?— 6,,)
+ 3 FO(Fin Fi— 0m)F}
=EY+ FotgonF s

=E%+Ej

(36)

where E® and E° are the Lagrangian
damage-plastic strain tensor and the
Lagrangian elastic strain tensor measured

with respect to the reference configuration

C’. respectively. While &° is the
Lagrangian elastic strain tensor measured

with respect to the intermediate

configuration C*. Similarly, the Eulerian
deformation

strains corresponding to

gradients F* and F? are given by

#=L(,- £

= %—(Sﬁ"Fi{lFif’) (38)

The total Eulerian strain tensor can be
expressed as follows

—_ V! _
e; =Lt Fg el Fot
. (39)
=¢ei+ey

The strain e® is referred to the

intermediate configuration c* , while the

dap

strains, &, € and € are defined relative
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to the current configuration as a
reference. The relationship between the
Lagrangian and Eulerian strains is
obtained directly in the form

Ej=FueuFy (40)

The change in the squared length of a
materrial filament deformed elastically

from C'to C? is given by

(ds)? = (dS®)? = dy;dy;— dxPdx?
41)
= ZdX,Ede,

However, the change in the squared
length of a material filament deformed
due to damage and plastic deformation

from C%® to C° is given by
(ds®)?— (dS)*=2dX;E?dX, (42)

The kinematics of finite strain

elasto-plastic deformation including
damage is completely described in Path I.
In order to describe the kinematics of
damage and plastic deformation, the
deformation gradient given by equation

(32) may be further decomposed into
Fy=FuFinFh (43)

difficult to
physically only the

However, it is very
characterize
kinematics of deformation due to damaege
inspite of its obvious physical phenomena.

The damage. however, may be defined

HRUTZ Y=L



through the effective stress concept.
Similarly the kinematics of damage can be
described using the effective kinematic
configuration. Considering Path II the
deformation gradient can be alternatively
expressed as follows

F=F4F., F'), F® (44)

where F° is the fictitious damage

deformation gradient from configuration

C' to C' and is given by
Fj=—2 (45)

The elastic deformation gradient in the

effective configuration is given by

T e a_Xl
F;*= 3 2r

(46)

~,

The corresponding plastic deformation
gradient in the effective configuration is

given by
»
Fi= a"i‘)i( (47)
7

while the fictitious initial damage
deformation gradient from configuration

Z‘O to C°is given by

|
3]
>

F¥ = (48)

3
ol
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Similar to Path I, the Right Cauchy

Green deformation tensor, C', is given by
Ci=F&FLFLFLFLFLFLFL (49)

The Lagrangian damage strain tensor
measured with respect to the fictious

configuration C'is given by

E:§=%(T“:,T~“z-—a,,) (50)
and the corresponding Lagrangian

effective elastic strain tensor measured

with respect to the fictious configuration

s given by

65=%(T‘2TV2,~—6:,;) (51)

The Lagrangian effective plastic strain
tensor measured with respect to the
fictious undamaged initial configuration

c’ is given by
i=L(FLFh-6) (52)

The total Lagrangian strain tensor is

therefore expressed as follows

Ei= $(FEFE-0)
+5 Fa(FhFh-0mFy

F'(F,F4—6)F, F% (53)

+

Do~ o= top—
5l
ER)

+
!

SFLFn(FLFL-0)FLFLTE
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The Lagrangian initial damage strain
tensor measured with respect to the

reference configuration _CO is denoted by

Ev=-1(FEFE-0p (54)

The Lagrangian plastic strain tensor

measured with respect to the reference

configuration C° is denoted by

&

Ei=Ffel, F&® (55)

3

One now defines the Lagrangian elastic

strain tensor measured with respect to

the reference configuration C° as follows:

E¢=F%“F% et F), F%® (56)

and the corresponding Lagrangian damage
strain tensor measured with respect to

the reference configuration C’ is given by

El=F*F' Fh et FoW F® (57

The total Lagrangian strain is now
given as follows through the additive

decomposition of the corresponding strains
Tdo, b, e, T d
E;,= EY+ E'+ Ej+ Ej, (58)

The change in the squared length of a

material filament deformed due to

fictitiously removing of damage from C'

0. .
to C 1is given by

412

(ds)*—=(ds)? = dyidyi—d x:d 1
_ (59)
= 2dX; E %dX,

The change in the squared length of a
material filament deformed elastically

from Z‘o to C is given by

(d$)?—(ds"?: =dxd xi—d 2’ d x’
_ (60)
= Zd}{,E;dX,

The change in the squared length of a
material filament deformed plastically

from

(@)= (dS)? =dxldr!—-d Xd X,
- 61

while the change in the squared length
of a material filament deformed due to
fictitious removing of the initial damage

from Z‘O to C°

(d8)?—(dS)? =d X,d X;—d X:d X,
. 62)
=2dX,E *dX,;

Finally Path III gives the deformation
gradient as follows

F,‘,’——"FZF?M annff:n (63)

where F° is the fictious damage

deformation gradient from configuration

¢’ to Edb and is given by



ax?
Fi--22

ax;, (64)
and the corresponding plastic

deformation gradient in the effective

configuration is given by

ox’
.1
F o (65)

Similar to Path II, the Right Cauchy

Green deformation tensor C is given by
Ci=F&FWFuFoFm Fn FLFS  (66)

The Lagrangian damage strain tensor

measured with respect to the fictitious

. . - . b, .
intermediate configuration C" is given
by

el=T(FLFL—5)) (67)

The total l.agrangian strain tensor is

expressed as follows

+ 4 Fa( Flo Fly—omm)F 3y (63)
L FUFPL(FGFL-8)FL T,
A FURLPL(F,FL-8)F L FlLFL

The Lagrangian damage strain tensor

measured with respect to the reference

configuration C° is denoted by

H 93 3% 19974 9

Ei=TFeF 4, F,F® (69)

The Lagrangian elastic strain tensor
measured with respect to the reference

configuration C° is denoted by
Ei=FFPFyFigeen Fo, FL,FS (70

The corresponding total Lagrangian

strain is now given by
E;=E*+ES+ EJE (71)

The change in the squared length of a

material filament deformed due to

fictitious removal of damage from C? to

b .
C’” is given by

(ds?)“—(d "V =dxPdx?—dx!dx!
_ (72)
=2ngE$dX,
The change in the squared length of a
material filament deformed plastically

from C” to C’ is then given by

(d H*—(ds) =dxldx?!- dX; dX,
=2dX; E%dX,

The total Lagrangian strain tensors
obtained by considering the three paths
are given by equations (36), (58) and
(71). From the equivalency of these total
strains, one obtains the explicit
presentations of the kinematics of damage
as follows. With the assumption of the

equivalence between the elastic strain
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tensors given by equations (36) and (71),
the damage-plastic deformation gradient
given by (34) and the Lagrangian damage
plastic strain tensor can be expressed as

follows

F?=FZF} (74)
and

E?=FE®*+E}+ E? (75)

Furthermore one obtains the following
expression from equations (58) and (71)
as follows

E{+EI=EI+E? (76)

which concludes that ¢’ and C’ are
the same. Substituting equations (57),
(69) and (70) into equation (76), one
obtains the effective Lagrangian elastic
strain tensor as follows

Ei= FEF,
(28, —Fo. el Fe, W)

+ Fle, FOIFLF®

Using equations (56) and (77) one can

now express ¢ as follows
e _ ~d T~e —_d d e d
6:7_Eﬁ_Fmi5mn+FmiemnFm (78)

This expression gives a general relation
of the effective elastic strain for finite

414

strains of elasto—plasic damage
deformation. For the special case when

one assumes that
Z'—'Ffm—émanu_O (79)

equation (78) can be reduced to the

following expression
=Fley FY (80)
This relation is similar to that obtained

without the

kinematics of damage and only utilizing

consideration of  the
the hypothesis of  elastic energy
equivalence. However, equation (80) for
the case of finite strains is given by
relation (78) which cannot be obtained
through the hypothesis of elastic energy
equivalence. Equation (79) maybe valid
only for some special cases of the small
strain theory.

5.2 Fictitious Damage Deformation
Gradients

The two fictitious deformation gradients
given by equations (45) and (64) may be
used to define the damage tensor in order
to describe the damage behavior of solids.

Since the fictitious effective deformed

configuration denoted by C' is obtained

by removing the damages from the real

deformed configuration denoted by C',
therefore the differential volume of the
deformed  volumes

fictitious effective
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denoted by d £ is obtained as follows
(28].

At

dQ = do'— a2’
(81)

=y (1- 31— d)(1— ¢3) a2’
or
d'=T7d20 (82)

where £2° is the volume of damage in

the configuration C' and [ is termed
the Jacobian of the damage deformation
which is the determinant of the fictitious
damage deformation gradient. Thus the
Jacobian of the damage deformation can
be written as follows

7 =1F?

_ 1
V(- A — 31— 3)

(83)

The determinant of the matrix (a) in
equation (17) is given by

L(a)™ 0 1Call (8]
| [al | (84)

{[a] |

- 1
V(= 31— $)(1— 3

Thus one assumes the following relation

without loss of generality
_ _L
F; Y=[6;— ¢l 2 (85)
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Although the identity is established
between J° and !ali. however. this is
not sufficient to demonstrate the validity
of equation (85). This relation is assumed
here based on the physics of the
geometrically symmetrized effective stress

(28]). Similarly, the fictitious damage

deformation gradient F* can be written

as follows
_1
Fi=[8;—¢5) ° (86)
Finally. assuming that —i:} based on

equation (78) the relations betwean Fe,

and FY and ¢ and ¢ are given by

Fi=F, FuF;' (87)
and
$y=FiduFi (88)

6. Constitutive Equation for Finite
Elasto-Plastic Deformation with
Damage Behavior

The kinematics discussed in the
previous sections provide the basis for a
finite deformation damage elasto-plasticity.
In this section the basic structure of the
constitutive equations are reviewed based
on the generalized Hooke's law. originally
obtained for small elastic strains such
that the second Piola-Kirchoff stress

tensor S is the gradient of free energy
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with respect to the Lagrangian elastic

strain tensor. Considering three

dimensional state of stress and strain,
one obtains the following relation

Sy = Z)x’;‘u(EkI“Ezl—Efl)
= QuEl
= Qu(Eu+Ef (89)
= bﬁH(Ekl— E{I' — E}

From the incremental analysis one
obtains the following rate form of the
constitutive equation by differentiating
equation (89)

Si=Qul Ey— EY— EY) (90)

Consequently the constitutive equation
of the elasto-pastic damage behavior can
be written as follows

Si = Qe E, 91)

where QDP is the damage elasto-plastic
stiffness and is expressed as follows

Q5§= Z)ilz;‘l - Q;’,‘u’ - Q,’,‘m (92)

where QP is the plastic stiffness and
Q“ is the damage stiffness. Both Q” and

Q° are the reduction in stiffness due to
the plastic and damage deteriorations,
respectively. Equation (92) shows the
obvious reduction in stiffness due to both
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the plastic and damage deteriorations
which is limited when two hypotheses as
mentioned in abstract are used for
coupling of the plastic and damage
deteriorations. The plastic stiffness and
the damage stiffness can be obtained by
using the flow rule and damage evolution
law, respectively. The details of the
complete constitutive models using the
proposed kinematics and the evolution
laws of damage will be stated in the
forthcoming paper.

7. Conclusion

The fourth-order anisotropic damage
effect tensor, M, using the kinematic
measure for damage expressed through
the second-order damage tensor ¢, is
reviewed here in reference to the
symmetrization of the effective stress
tensor. This introduces a distinct
kinematic measure of damage which is
complimentary to the deformation

kinematic measure of strain. A

thermodynamically consistent evolution
equation for the damage tensor, ¢
together with a generalized
thermodynamic force conjugate to the
damage tensor was presented in the paper
by Voyiadjis and Park (17,18). Voyiadjis

and Venson (39) quantified the physical
values of the eigenvalues, @,(k=1,2,3),

and the second-order damage tensor. ¢,
for the unidirectional fibrous composite by
measuring the crack densities with the

assumption that one of the eigen-



directions of the damage tensor coincides
with the fiber direction.

The fourth-order anisotropic damage
effect tensor wused here is obtained
through the geometrical symmetrization of
the effective stress (23). This tensor is
used here for the kinematic description of
damage. The explicit representation of the
fourth-order damage effect tensor is
obtained with reference to the principal
damage direction coordinate system.

The damage elasto-plastic deformation
for finite strain is also described here
using the kinematics of damage. In this
work the multiplicative decomposition of
the deformation gradient and the additive
decomposition of the Lagrangian strain
tensor are used in order to describe the
kinematics of damage. Both formulations
are used to deduce seperately the strain
coupled

due to damage and the

elasto-plastic, elastic-damage and
plastic-damage strains.

The constitutive relation between the
rate of the second Piola-Kirchhoff stress
tensor and the Lagrangian strain rate, is
established for the elasto-plastic model
with damage. The resulting tangential
elasto-plastic damage stiffness is obtained
in the form of an additive

decomposition of the respective elastic,

plastic and damage stiffnesses.
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