• Title/Summary/Keyword: stress/strain effect

Search Result 1,389, Processing Time 0.027 seconds

Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors (YBCO CC테이프 임계전류의 인장변형률 특성)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF

The Effect of Repetitive Compression with Constant Stress on the Compressive Properties of Foams (일정 응력 반복압축이 발포체의 압축 특성에 미치는 영향)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.258-265
    • /
    • 2005
  • To study the compressive stress, recovery force and permanent strain of foams for footwear midsole, polyurethane(PU), phylon(PH) and injection phylon(IP) foams were repetitively compressed with constant compressive stress. Maximum compressive stress of PU did not decrease with repetitive compression on the constant compressive stress, but that of IP largely decreased. Engineering strain of foams were formed by repetitively compressing the three types of foam. The engineering strain of PU was smaller than that of IP and PH. Compressive stress and recovery force of IP and PH at certain strain were decreased with repetitive compression, but that of PU was not noticeably changed.

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

A Study on the Cutting characteristics of a plastic sheet including Friction (마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구)

  • Han Joohyun;Kim Dohyun;Kim Chungkyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

A Description of Thermomechanical Behavior Using a Rheological Model (리올러지 모델을 이용한 열적 기계적 변형 거동 모사)

  • Lee Keum-Oh;Hong Seong-Gu;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

Yielding behavior and yield strength of plate structure containing softened region (연화부를 포함한 판재의 항복거동과 항복강도)

  • 배강열;김희진;이태열;엄동석
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.79-88
    • /
    • 1990
  • Welded joint often contains soft or softened regions such as the HAZ of TMCP steel welded with high heat input. In this study, the equivalent yield strength of plate structure containing softened region was predicted by FEM analysis, and its incremental behavior was explained with the results of the analysis. The calculated results of yield strength indicated the following for the plate structures. 1) As the softened region starts to yield, shear stress begins to build up along the boundary between base metal and softened region. This results in multi-axial stress condition which gives restraint on the softened region. 2) Restraint effect has a significant influence on the distribution of the shear stress, the nominal stress, and the strain. 3) The yielding behavior of softened region becomes the same as that of base metal when both ratios of length to width and thickness to width of softened region are larger than 30 and 13 respectively.

  • PDF