• Title/Summary/Keyword: stress/strain analyses

Search Result 366, Processing Time 0.023 seconds

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

Ductility of Circular Hollow Reinforced Concrete Piers Internally Confined by a Steel Tube (내부 강관 보강 원형 R.C 기둥의 연성 거동 특성)

  • Han, Taek-Hee;Han, Sang-Yun;Han, Keum-Ho;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.127-137
    • /
    • 2003
  • In locations where the cost of concrete is relatively high, or in situations where the weight of concrete members is to be kept to a minimum, it may be economical to use hollow R.C. members. The ductility of circular hollow R.C. columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. In this study, moment-curvature analyses are conducted with Mander's confined concrete stress-strain relationship. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Determination of CPT-based Bearing Capacity of Footings Under Surcharge Using State-dependent Finite Element Analysis (상태의존성 유한요소해석 및 CPT결과를 적용한 상재하중하의 얕은 기초의 지지력 결정)

  • Lee Jun-Hwan;Kim Dae-Ho;Park Dong-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.55-62
    • /
    • 2005
  • The use of the bearing capacity equation is subjected to several uncertainties. In this study, estimation of the bearing capacity of footings based on the cone resistance q$_{c}$ is investigated. Non-linear finite element analyses based on a state-dependent stress-strain model were performed to obtain the load-settlement responses of axially loaded circular footings. Various soil and footing conditions, including different relative densities, depths of embedment, and footing diameters were considered in the analyses. Based on the finite element results, load-settlement curves were obtained and used to determine the unit limit bearing capacity in terms of the cone resistance q$_{c}$ for footings subjected to surcharge. Values of the unit bearing capacity for different embedment depths were in a narrow range, while considerable variation was observed with relative density D$_{R}$. It was observed that the unit limit bearing capacity normalized with respect to q$_{c}$ decreases as D$_{R}$ increases for a given surcharge.

Fabrication of Stress-balanced $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ Dielectric Membrane (스트레스균형이 이루어진 $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ 유전체 멤브레인의 제작)

  • Kim, Myung-Gyoo;Park, Dong-Soo;Kim, Chang-Won;Kim, Jin-Sup;Lee, Jung-Hee;Lee, Jong-Hyun;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.51-59
    • /
    • 1995
  • Stress-balanced flat 150 nm-$Si_{3}N_{4}$/300 nm-$SiO_{2}$/150 nm-$Si_{3}N_{4}$ dielectric membrane on silicon substrate has been fabricated. Analyses of stress-deflection and stress-temperature, and visual inspection for the strain diagnostic test patterns were performed in order to characterize stress properties of the membrane. The $SiO_{2}$ layers sandwiched between two $Si_{3}N_{4}$ layers were deposited by three different techniques(PECVD, LPCVD, and APCVD) for the purpose of investigating the dependence of stress on the deposition methods. Some extent of tensile stress in the membrane was always observed regardless of the deposition methods, however it could be balanced against silicon substrate by post-wet oxidation in $1,150^{\circ}C$. Stress-temperature characteristics of the membranes showed that APCVD-LTO was better as mid-$SiO_{2}$ layer than PECVD - or LPCVD - $SiO_{2}$ when there was no oxidation process.

  • PDF

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: I. Constitutive Model (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석: I. 구성모델)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this study is to perform finite element analyses(FEA) using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening model was then developed to solve the problem and its mathematical formulations and experimental verifications were also described. In a companion paper, the constitutive equation will be formulated for accurate and efficient solutions of FEA, and coded into a nonlinear analysis program, and finally a field problem will be analyzed. The proposed model includes the failure criterion of a von Mises type and the anisotropic hardening rule based on the generalized isotropic hardening description, which can model the nonlinearity and the anisotropy of the stress-strain relationship. As a result this study could verty the experimental results for UU triaxial tests, CU triaxial tests for overconsolidated samples, and anisotropic loading tests with the rotation of principal stress axes for $K_0$consolidated samples.

  • PDF

Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy (2024-T351 알루미늄 합금판 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.601-611
    • /
    • 2007
  • Most of mechanically jointed aircraft structures are always encountered the fretting damages on the contact surfaces between two jointed structural members or at the edges of fastener holes. The partial slip and contact stresses associated with fretting contact can lead to severe reduction in service lifetime of aircraft structures. Thus a critical need exists for predicting fretting crack initiation in mechanically jointed aircraft structures, which requires characterizing both the near-surface mechanics and intimate relationship with fretting parameters. In this point of view, a series of fretting fatigue specimen tests for 2024-T351 Al-alloy, have been conducted to validate a mechanics-based model for predicting fretting fatigue life. And included in this investigaion were elasto-plastic contact stress analyses using commercial FEA code to quantify the stress and strain fields in subsurface to evaluate the fretting fatigue crack initiation.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.