• Title/Summary/Keyword: stress/strain analyses

Search Result 366, Processing Time 0.025 seconds

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

Appropriate Response Index for Predicting Rupture in WUF-W Connections using FEA (유한요소 해석을 이용한 WUF-W 접합부 최적의 파단 예측 반응지표 선정)

  • Han, Sang Whan;Kim, Young Woo;Kim, Tae O
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.205-213
    • /
    • 2017
  • The WUF-W moment connection is a pre-qualified connection that can be used for special moment frames specified in current seismic design specifications. Since the stress distribution near the connection varies according to access hole configuration, the cyclic performance of WUF-W connections is strongly affected by the access hole configurations. To evaluate the connection performance according to various access hole configurations, it is expensive to conduct experiments with many connection specimens. Instead, finite element analyses (FEA) can be performed. Throughout the FEA, stress and strain distribution in the connection can be monitored at each loading step. The purpose of this study is to construct nonlinear 3-dimensional FE models for accurately predicting the cyclic behavior of WUF-W connections. For predicting connection fracture using FEA, an appropriate response index detecting the incidence of connection rupture is proposed.

Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts

  • Lee, Kang Wook;Lee, Seung-Gyu;Han, Nam Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1432-1440
    • /
    • 2012
  • Weissella confusa 31, an isolate from human feces, possesses desirable properties as a probiotic strain, including bile salt resistance. W. confusa 31 is not inhibited by bile salts up to 0.3% concentration. Proteins affected by bile salts (0.05%) were examined by 2-D gel electrophoresis. Our proteomic analyses revealed that the intensities of 29 spots were changed, where 17 increased (including 2 spots observed only under the bile salts stress conditions) and 12 decreased. Proteins were identified by MALDI-TOF mass spectrometry. Proteins increased in the band intensities included adenylate kinase (12.75-fold increase), Clp-like ATP-dependent protease (11.91-fold), 6-phosphogluconate dehydrogenase (10.35-fold), and HSP 70 (5.07-fold). Some of the increased or decreased proteins are also known to be involved in other types of stress responses.

Improvement of Measurement Accuracy by Correcting Systematic Error Associated with the X-ray Diffractometer (X-선 회절 장비의 기계적 오차 수정을 통한 분석 정확도 향상)

  • Choi, Dooho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.97-101
    • /
    • 2017
  • X-ray diffractometers are used to characterize material properties, such as the phase, texture, lattice constant and residual stress, based on the diffracted beams obtained from specimens. Quantitative analyses using X-rays are typically conducted by measuring the peak positions of the diffracted beams. However, the long-term use of the diffractomer, like any other machine, results in errors associated with the mechanical parts, which can deteriorate the accuracy of the quantitative analyses. In this study, the process of correcting systematic errors in the $2{\theta}$ range of $30{\sim}90^{\circ}$ is discussed, for which strain-free Si powders from NIST were used as the standard specimens. For the evaluation of the impact of such error correction, we conducted a quantitative analysis of the true lattice constant for tungsten thin films.

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

  • Lee, Gyu Min;Ko, Seyoung;Oh, Eom-Ji;Song, Yu-Rim;Kim, Donghyuk;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.428-439
    • /
    • 2020
  • Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.

Optimization Design of a Waterproof Seal Cross-Section of Automotive Electrical Connectors (자동차 전장 커넥터 방수시일 단면의 최적설계)

  • Kang, KyuTae;Lee, ChaeEun;Kim, HoKyung
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.224-231
    • /
    • 2021
  • Recently, the waterproofing performance of high-voltage connectors in automotive vehicles has attracted increased interest. In this study, an optimal cross-sectional shape was derived to obtain uniform contact pressure and strain by considering stress relaxation problems caused by initial tension when mounting a seal. A high strain of 52.1 was distributed in the round region, owing to excessive initial tension. The finite element method (FEM) analysis indicated that the strain corresponding to the optimal initial tensile was 11. We adopted six design factors to optimize the seal cross-section and three factors as the main design factors. An orthogonal arrangement table was prepared using Minitab. FEM analyses of 16 study models were conducted to determine the optimized model. The contact pressure of the optimization model is the most evenly distributed while satisfying the waterproof performance of 0.47 MPa. Compared to the initial model, the difference in strain decreases from 35.5% to 19.6%. Finally, the derived cross-sectional shape can reduce the strain of the round region by 33.8% and the differences in the contact pressure at the upper and lower surfaces by 42% and 76%, respectively.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Seismic Analysis of Firefighting Pipe Networks (소방배관 형상에 따른 배관 내진해석)

  • Choi, Ho-Sung;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.149-154
    • /
    • 2019
  • The stability of firefighting pipes is crucial in the event of an earthquake. In Korea, specification-based designs are used in accordance with NFSC. However, engineering performance-based designs are used for buildings that have special requirements. For firefighting pipes, tree type pipe networks are usually utilized in buildings; however, they are characterized by several limitations. Hence, grid type and loop type networks are being utilized lately. Earthquake-resistant designs for firefighting pipes in Korea utilize NFPA 13 as the cookbook. Nevertheless, an engineering analysis is required to verify its reliability. The NFPA 13 standard used in Korea is a design method for engineers who lack earthquake engineering analysis knowledge of pipes and adapt ASCE and ASME guidelines. Earthquake resistant designs in Korea review braces only. Hence, various analyses under load conditions, such as the internal pressure of a pipe, force exerted by a continuous load, and an earthquake, are required to ensure reliability. An engineering earthquake-resistance analysis showed that tree type pipe networks are less stable than grid and loop type pipe networks. A comparison of earthquake-resistance analysis based on stress and strain revealed that strain analysis exhibited a conservative result value in the range of over-stress. Therefore, for the earthquake-resistance analysis of pipes, it is rational that engineers perform analysis to achieve the required standards through engineering analysis rather than uniform calculations, which should also be analyzed considering various analysis conditions.

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.