DOI QR코드

DOI QR Code

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377

산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가

  • Kim, Il-Sup (School of Life Science, Kyungpook National University) ;
  • Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health) ;
  • Yang, Ji-Young (School of Life Science, Kyungpook National University) ;
  • Lee, Oh-Seok (Department of Food Science and Biotechnology, Institute of Fermentation Biotechnology, Kyungpook National University) ;
  • Park, Heui-Dong (Department of Food Science and Biotechnology, Institute of Fermentation Biotechnology, Kyungpook National University) ;
  • Jin, Ing-Nyol (School of Life Science, Kyungpook National University) ;
  • Yoon, Ho-Sung (School of Life Science, Kyungpook National University)
  • 김일섭 (경북대학교 자연과학대학 생명과학부) ;
  • 윤혜선 (질병관리본부 감염병센터 간염폴리오바이러스팀) ;
  • 양지영 (경북대학교 자연과학대학 생명과학부) ;
  • 이오석 (경북대학교 농업생명과학대학 생명식품공학부) ;
  • 박희동 (경북대학교 농업생명과학대학 생명식품공학부) ;
  • 진익렬 (경북대학교 자연과학대학 생명과학부) ;
  • 윤호성 (경북대학교 자연과학대학 생명과학부)
  • Published : 2009.04.30

Abstract

Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

산화적 스트레스는 정상적인 대사 과정뿐만 아니라 외부적인 환경에 노출 되었을 때 일어나는 것으로 잘 알려져 있다. 이러한 스트레스를 극복하기 위해 생물체들은 각자의 시스템에 맞게 다양한 항산화 시스템을 진화 발전시켜 왔다. Saccharomyces cerevisiae KNU5377 균주는 고온뿐만 아니라 다양한 스트레스에 대해 내성을 가짐을 확인하였다. 대부분의 스트레스는 궁극적으로는 산화적 스트레스로 귀결된다. 이러한 측면에서 본 연구는 KNU5377 균주가 어떠한 시스템에 의해서 다른 균주보다 스트레스 내성을 가지는지를 밝히기 위해 접근하였다. 수행된 연구결과에서 KNU5377 균주는 항산화 시스템과 밀접하게 관련된 단백질(superoxide dismutase, thioredoxin system, heat shock proteins)과 항산화 관련 물질(trehalose)을 과발현함을 확인하였다. 그러나 이러한 단백질들이 어떠한 조절 시스템에 의해서 균주 특이적인 발현 양상을 보이는지는 현재까지 확인되지 않고 있다. 본 연구는 KNU5377 균주 그 자체의 중요성과 함께 균주 내의 스트레스 내성과 관련된 유용한 유전자를 탐색하여 더욱 우수한 유전자원을 발굴하는데 기여 할 것으로 보인다.

Keywords

References

  1. Arguelles, J. C. 1997. Thermotolerance and trehalose accumulation induced by heat shock in yeast cells of Candida albicans. FEMS Microbiol. Lett. 146, 65-71 https://doi.org/10.1016/S0378-1097(96)00455-7
  2. Buchner, J. 1996. Supervising the fold: functional principles of molecular chaperones. FASEB J. 10, 10-19
  3. Burine, J. P., T. L. Carter, S. J. Hodgetts, and R. C. Matthews. 2006. Fungal heat shock proteins in human disease. FEMS Microbiol. Rev. 30, 53-88 https://doi.org/10.1111/j.1574-6976.2005.00001.x
  4. Christian, G., L. Gilles, L. Jaekwon, J. M. Buhler, K. Sylvie, P. Michel, B. Helian, B. T. Michael, and L. Jean. 1998. The $H_2O_2$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273, 22480-22489 https://doi.org/10.1074/jbc.273.35.22480
  5. Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22, 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
  6. Crmel-Harel, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439-461 https://doi.org/10.1146/annurev.micro.54.1.439
  7. Dawes, I. W. 2000. Response of eukaryotic cells to oxidative stress. Agric. Chem. Biotechnol. 43, 211-217
  8. Elisa, C., P. Eva, E. Pedro, H. Enrique, and R. Joaquim. 2000. Oxidative damage stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275, 27393-27398 https://doi.org/10.1074/jbc.M003140200
  9. Francois, J. and J. L. Parrou. 2001. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25, 125-145 https://doi.org/10.1111/j.1574-6976.2001.tb00574.x
  10. Glover, J. R. and S. Linquist. 1998. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82 https://doi.org/10.1016/S0092-8674(00)81223-4
  11. Hauser, N. C., K. Fellenberg, R. Gil, S. Bastuck, J. D. Hoheisel, and J. E. Perez-Ortin. 2001. Whole genome analysis of a wine yeast strain. Comp. Funct. Genom. 2, 69-79 https://doi.org/10.1002/cfg.73
  12. Jamieson, D. J. 1998. Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14, 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  13. Kim, I. S., H. S. Yun, H. Iwahashi, and I. N. Jin. 2006. Genome-wide expression analyses of adaptive response against menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41, 2305-2313 https://doi.org/10.1016/j.procbio.2006.06.005
  14. Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17, 207-217
  15. Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant yeast for fuel alcohol production a high temperature. Kor. J. Appl. Microbiol .Biotechnol. 23, 617-623
  16. Kwon, H. B., E. T. Yeo, S. E. Hahn, S. C. Bae, D. Y. Kim, and M. O. Byun. 2003. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2) in Zygosaccharomyces rouxii. FEMS Yeast Res. 3, 433-440 https://doi.org/10.1016/S1567-1356(03)00035-7
  17. Lee, S. M., H. J. Koh, D. C. Park, B. J. Song, T. L. Huh, and J. W. Park. 2002. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32, 1185-1196 https://doi.org/10.1016/S0891-5849(02)00815-8
  18. Mauzeroll, J., A. J. Bard, O. Owhadian, and T. J. Monks. 2004. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proc. Natl. Acad. Sci .USA 101, 17582-17587 https://doi.org/10.1073/pnas.0407613101
  19. Moradas-Ferreira, P. and V. Costa. 2000. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defenses, damage and death. Redox Rep. 5, 277-285 https://doi.org/10.1179/135100000101535816
  20. Parrou, J. L. and J. Francois. 1997. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Chem. 248, 186-188 https://doi.org/10.1128/AEM.00557-07
  21. Perreira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1, 11 https://doi.org/10.1186/1471-2180-1-11
  22. Pretorious, I. S. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of wine making. Yeast 16, 675-729 https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B
  23. Querol, A., M. T. Fernández-Espinar, M. I. del Olmo, and E. Barrio. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86, 3-10 https://doi.org/10.1016/S0168-1605(03)00244-7
  24. Reinders, A., I. Romano, A. Wiemken, and C. de Virgilio. 1999. The theromophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerances. J. Bacteriol. 181, 4665-4668
  25. Ribeiro, M. J., A. Reinders, T. Boller, A. Wiemken, and C. de Virgilio. 1997. Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol. Microbiol. 25, 571-581 https://doi.org/10.1046/j.1365-2958.1997.4961856.x
  26. Querol, A. and G. H. Fleet. 2006. Yeasts in food and beverage. New York, Springer Verlag
  27. Sano, F., N. Asakawa, Y. Inoue, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39, 80-87 https://doi.org/10.1006/cryo.1999.2188
  28. Singer, M. A. and S. Lindquist. 1998a. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639-648 https://doi.org/10.1016/S1097-2765(00)80064-7
  29. Singer, M. A. and S. Lindquist. 1998b. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16, 460-468 https://doi.org/10.1016/S0167-7799(98)01251-7
  30. Van Dijck, P., P. Ma, M. Versele, M. F. Gorwa, S. Colombo, K. Lemaire, D. Bossi, A. Loiez, and J. M. Thevelein. 2000. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. J. Mol. Microbiol. Biotechnol. 2, 521-530
  31. Yoshida, A., A. Rzhetsky, L. C. Hsu, and C. Chang. 1998. Human aldehyde dehydrogenase family. Eur. J. Biochem. 251, 549-557 https://doi.org/10.1046/j.1432-1327.1998.2510549.x