DOI QR코드

DOI QR Code

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

  • Lee, Gyu Min (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ko, Seyoung (School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Oh, Eom-Ji (Graduate School of Biotechnology, Kyung Hee University) ;
  • Song, Yu-Rim (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Kim, Donghyuk (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Oh, Chang-Sik (Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2020.06.06
  • Accepted : 2020.09.07
  • Published : 2020.10.01

Abstract

Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.

Keywords

References

  1. Beer, S. V., Kim, J.-H., Zumoff, C. H., Bogdanove, A. J., Laby, R. J., Tanii, A., Tamura, O., Gustafson, H. L., Momol, T. and Aldwinckle, H. S. 1996. Characterization of bacteria that cause "bacterial shoot blight of peard" in Japan. Acta Hortic. 411:179-182. https://doi.org/10.17660/actahortic.1996.411.36
  2. Bosl, M. and Kersten, H. 1991. A novel RNA product of the tyrT operon of Escherichia coli. Nucleic Acids Res. 19:5863-5870. https://doi.org/10.1093/nar/19.21.5863
  3. Bozcal, E. 2019. Insight into the mobilome of Escherichia coli. In: The universe of Escherichia coli, ed. by M. S. Erjavec, pp. 333-747. IntechOpen, London, UK.
  4. Buchfink, B., Xie, C. and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59-60. https://doi.org/10.1038/nmeth.3176
  5. Chaudhari, N. M., Gupta, V. K. and Dutta, C. 2016. PGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373. https://doi.org/10.1038/srep24373
  6. Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  7. Falkenstein, H., Bellemann, P., Walter, S., Zeller, W. and Geider, K. 1988. Identification of Erwinia amylovora, the fireblight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl. Environ. Microbiol. 54:2798-2802. https://doi.org/10.1128/AEM.54.11.2798-2802.1988
  8. Gross, M., Geier, G., Rudolph, K. and Geider, K. 1992. Levan and levansucrase synthesized by the fireblight pathogen Erwinia amylovora. Physiolol. Mol. Plant Pathol. 40:371-381. https://doi.org/10.1016/0885-5765(92)90029-U
  9. Guglielmini, J. and Van Melderen, L. 2011. Bacterial toxin-antitoxin systems: translation inhibitors everywhere. Mob. Genet. Elements 1:283-306. https://doi.org/10.4161/mge.18477
  10. Han, K. S., Yu, J.-G., Lee, H.-B., Oh, C.-S., Yea, M. C., Lee, J.-H. and Park, D. H. 2016. Controlling by effective pruning of twigs showing black shoot blight disease symptoms in apple trees. Res. Plant Des. 22:269-275. https://doi.org/10.5423/RPD.2016.22.4.269
  11. Hershberg, R., Altuvia, S. and Margalit, H. 2003. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res. 31:1813-1820. https://doi.org/10.1093/nar/gkg297
  12. Hughes, D. 2000. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol. 1:reviews0006.1. https://doi.org/10.1186/gb-2000-1-6-reviews0006
  13. Kim, W. S., Gardan, L., Rhim, S. L. and Geider, K. 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Bacteriol. 49:899-905. https://doi.org/10.1099/00207713-49-2-899
  14. Kim, W. S., Hildebrand, M., Jock, S. and Geider, K. 2001. Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147:2951-2959. https://doi.org/10.1099/00221287-147-11-2951
  15. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. and Marra, M. A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639-1645. https://doi.org/10.1101/gr.092759.109
  16. Kube, M., Migdoll, A. M., Gehring, I., Heitmann, K., Mayer, Y., Kuhl, H., Knaust, F., Geider, K. and Reinhardt, R. 2010. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11:393. https://doi.org/10.1186/1471-2164-11-393
  17. Lee, G. M., Oh, E.-J., Ko, S., Park, J., Park, D. H., Kim, D. and Oh, C.-S. 2018. Draft genome sequence of a bacterial plant pathogen Erwinia pyrifoliae strain EpK1/15 isolated from an apple twig showing black shoot blight. Korean J. Microbiol. 54:69-70. https://doi.org/10.7845/kjm.2018.7087
  18. Li, W.-H., Gojobori, T. and Nei, M. 1981. Pseudogenes as a paradigm of neutral evolution. Nature 292:237-239. https://doi.org/10.1038/292237a0
  19. Majdalani, N., Chen, S., Murrow, J., St John, K. and Gottesman, S. 2001. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39:1382-1394. https://doi.org/10.1111/j.1365-2958.2001.02329.x
  20. Mann, R. A., Smits, T. H., Bühlmann, A., Blom, J., Goesmann, A., Frey, J. E., Plummer, K. M., Beer, S. V., Luck, J., Duffy, B. and Rodoni, B. 2013. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS ONE 8:e55644. https://doi.org/10.1371/journal.pone.0055644
  21. Maxson-Stein, K., McGhee, G. C., Smith, J. J., Jones, A. L. and Sundin, G. W. 2003. Genetic analysis of a pathogenic Erwinia sp. isolated from pear in Japan. Phytopathology 93:1393-1399. https://doi.org/10.1094/PHYTO.2003.93.11.1393
  22. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R. and Wilson, R. K. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852-856. https://doi.org/10.1038/35101614
  23. Merrikh, C. N. and Merrikh, H. 2018. Gene inversion potentiates bacterial evolvability and virulence. Nat. Commun. 9:4662. https://doi.org/10.1038/s41467-018-07110-3
  24. Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W., Gardner, P. P., Jones, T. A., Tate, J. and Finn, R. D. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43:D130-D137. https://doi.org/10.1093/nar/gku1063
  25. Oh, C.-S., Kim, J. F. and Beer, S. V. 2005. The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infectiondouble dagger. Mol. Plant Pathol. 6:125-138. https://doi.org/10.1111/j.1364-3703.2005.00269.x
  26. Park, D. H., Thapa, S. P., Choi, B.-S., Kim, W.-S., Hur, J. H., Cho, J. M., Lim, J.-S., Choi, I.-Y. and Lim, C. K. 2011. Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J. Bacteriol. 193:586-587. https://doi.org/10.1128/JB.01246-10
  27. Petnicki-Ocwieja, T., van Dijk, K. and Alfano, J. R. 2005. The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J. Bacteriol. 187:649-663. https://doi.org/10.1128/JB.187.2.649-663.2005
  28. Podlaha, O. and Zhang, J. 2010. Pseudogenes and their evolution. In: Encyclopedia of life sciences (ELS), pp. 1-8. John Wiley & Sons, Ltd., Chichester, UK.
  29. Smits, T. H., Jaenicke, S., Rezzonico, F., Kamber, T., Goesmann, A., Frey, J. E. and Duffy, B. 2010. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genomics 11:2. https://doi.org/10.1186/1471-2164-11-2
  30. Sonnhammer, E. L. and Ostlund, G. 2015. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43:D234-D239. https://doi.org/10.1093/nar/gku1203
  31. Tampakaki, A. P., Skandalis, N., Gazi, A. D., Bastaki, M. N., Sarris, P. F., Charova, S. N., Kokkinidis, M. and Panopoulos, N. J. 2010. Playing the "Harp": evolution of our understanding of hrp/hrc genes. Annu. Rev. Phytopathol. 48:347-370. https://doi.org/10.1146/annurev-phyto-073009-114407
  32. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J. and Natale, D. A. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. https://doi.org/10.1186/1471-2105-4-41
  33. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M. and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44:6614-6624. https://doi.org/10.1093/nar/gkw569
  34. Werren, J. H. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. U. S. A. 108(Suppl 2):10863-10870. https://doi.org/10.1073/pnas.1102343108
  35. Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S. and Chun, J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  36. Zhao, Y. and Qi, M. 2011. Comparative genomics of Erwinia amylovora and related Erwinia species: what do we learn? Genes (Basel) 2:627-639. https://doi.org/10.3390/genes2030627
  37. Zhou, D., Han, Y., Qiu, J., Qin, L., Guo, Z., Wang, X., Song, Y., Tan, Y., Du, Z. and Yang, R. 2006. Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes. Infect. 8:2669-2678. https://doi.org/10.1016/j.micinf.2006.07.015