• Title/Summary/Keyword: stress/strain analyses

Search Result 366, Processing Time 0.026 seconds

EFFECT OF Ni CONTENT ON THE AUSTENITE STABILITY AND MECHANICAL PROPERTIES OF NANOCRYSTALLINE Fe-Ni ALLOY FABRICATED BY SPARK PLASMA SINTERING

  • D. PARK;S.-J. OH;I.-J. SHON;S.-J. LEE
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1477-1480
    • /
    • 2018
  • The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.

Analysis of Viscoplastic Softening Behavior of Concrete under Displacement Control (변위제어하에서 콘크리트의 점소성 연화거동해석)

  • Kim, Sang-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.185-193
    • /
    • 1995
  • The softening behaviors of concrete have been the object of numerous experimental and numerical studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In order to properly describe material behaviors corresponding to different stress levels, two surfaces in stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a stress path reaches the failure surface, it is considered that the softening behaviors are initiated as micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite element analyses have been carried out under the displacement control. Numerically simulated results indicate that the model is able to predict the essential characteristics of concrete behaviors such as the non-linearity, stiffness degradation, different behaviors in tension and compression, and specially dilatation under uniaxial compression.

  • PDF

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

A numerical study on squeezing of overstressed rock around deep tunnels (심부 터널 주변 과응력 암반의 압출 거동에 관한 수치해석적 연구)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.557-568
    • /
    • 2016
  • Squeezing is a phenomenon that may occur in deep tunneling and could bring about a large plastic deformation, tunnel closure and collapse of tunnel supports. Therefore, quantitative estimations of deformation and stress from squeezing and its possibility are necessary for establishment of a rational tunneling method. This study carried out three dimensional numerical analyses using a strain softening model in order to simulate the behaviour of squeezing and to estimate deformation and yield area around tunnels quantitatively. Numerical analyses were performed for 42 cases of various stress and strength conditions. As a result, the maximum tangential stress and strength of rock mass ratio could estimate plastic deformation and yield depth around tunnels and equations of relations between them were proposed.

Compressive Deformation Behaviors of Aluminum Alloy in a SHPB Test (SHPB 시험과 알루미늄 합금의 압축 변형거동)

  • Kim, Jong-Tak;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.617-622
    • /
    • 2012
  • Structures are often subjected to various types of loading such as static, dynamic, or impact loading. Therefore, experimental and numerical methods have been employed to find adequate material properties according to the conditions. The Split-Hopkinson pressure bar (SHPB) test has frequently been used to test engineering materials, particularly those used under high strain rates. In this study, the compressive deformation behaviors of aluminum alloy under impact conditions have been investigated by means of the SHPB test. The experimental results were then compared with those of finite element analyses. It was shown that reasonably good agreement with the true stress-strain curves was obtained at strain rates ranging from 1000 $s^{-1}$ to 2000 $s^{-1}$. When the strain rate increased by 30%, the peak stress in particular increased by 17%, and the strain also increased by 20%.

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Damage of Overlaid Concrete Structures Subjected to Humidity Changes in the Atmosphere (습도 변화에 따른 콘크리트 덧씌우기 보수체의 손상분석)

  • 윤우현
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.766-773
    • /
    • 2002
  • The failure phenomenon of overlaid concrete structures, such as surface crack, and peel-off failure, shear bond failure in the end contact zone, was investigated due to humidity changes. To investigate this failure phenomenon, the surface tensile stress, and the shear stress, the vertical tensile stress in the contact zone were analysed using the non-linear stress-strain relationship of material such as strain-hardening- and strain-softening diagrams. Overlay thickness and overlay material were the main variables in the analyses. It is assumed that the initial surface humidity of overlaid concrete structures was 100% r.H. With a atmospheric humidity of 55% r.H. and two load cases for drying(LCI), curing and drying(LC2), the stress states of overlaid concrete structures were calculated. The result shows that only fictitious cracks occurred in the overlay surface of CM2O, ECM25, and no shear bond failure occurred in the contact zone without CM2O. The peel-off failure was proved to be the main cause of the damage in the overlaid concrete structures. Only for overlay thickness of 1cm occurred no peel-off failure in the case of drying after a long-term public use(LC1). In the case of curing and drying during overlay work(LC2) occurred the peel-off failure within 1.5days for all the overlaid concrete structures.

Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model (비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석)

  • Kim, Yooil;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

Software and Hardware Development of Micro-indenter for Material Property Evaluation of Hyper-Elastic Rubber (초탄성고무 물성평가용 미소압입시험기의 소프트웨어 및 하드웨어 개발)

  • Lee, Hyung-Yil;Kim, Dong-Wook;Lee, Jin-Haeng;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.816-825
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are examined via finite element (FE) analyses. An optimal location for data analysis is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/com-pression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve with an average error less than 3%.

Performance analyses of antagonistic shape memory alloy actuators based on recovered strain

  • Shi, Zhenyun;Wang, Tianmiao;Da, Liu
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.765-784
    • /
    • 2014
  • In comparison with conventional shape memory actuated structures, antagonistic shape memory alloy (SMA) actuators permits a fully reversible two-way response and higher response frequency. However, excessive internal stress could adversely reduce the stroke of the actuators under repeated use. The two-way shape memory effect might further decrease the range of the recovered strain under actuation of an antagonistic SMA actuator unless additional components (e.g., spring and stopper) are added to regain the overall actuation capability. In this paper, the performance of all four possible types of SMA actuation schemes is investigated in detail with emphasis on five key properties: recovered strain, cyclic degradation, response frequency, self-sensing control accuracy, and controllable maximum output. The testing parameters are chosen based on the maximization of recovered strain. Three types of these actuators are antagonistic SMA actuators, which drive with two active SMA wires in two directions. The antagonistic SMA actuator with an additional pair of springs exhibits wider displacement range, more stable performance under reuse, and faster response, although accurate control cannot be maintained under force interference. With two additional stoppers to prevent the over stretch of the spring, the results showed that the proposed structure could achieve significant improvement on all five properties. It can be concluded that, the last type actuator scheme with additional spring and stopper provide much better applicability than the other three in most conditions. The results of the performance analysis of all four SMA actuators could provide a solid basis for the practical design of SMA actuators.