DOI QR코드

DOI QR Code

Compressive Deformation Behaviors of Aluminum Alloy in a SHPB Test

SHPB 시험과 알루미늄 합금의 압축 변형거동

  • 김종탁 (한양대학교 자동차공학과) ;
  • 우성충 (한양대학교 국방 생존성기술 특화연구센터) ;
  • 김진영 (국방과학연구소) ;
  • 김태원 (한양대학교 기계공학부)
  • Received : 2011.12.22
  • Accepted : 2012.04.12
  • Published : 2012.06.01

Abstract

Structures are often subjected to various types of loading such as static, dynamic, or impact loading. Therefore, experimental and numerical methods have been employed to find adequate material properties according to the conditions. The Split-Hopkinson pressure bar (SHPB) test has frequently been used to test engineering materials, particularly those used under high strain rates. In this study, the compressive deformation behaviors of aluminum alloy under impact conditions have been investigated by means of the SHPB test. The experimental results were then compared with those of finite element analyses. It was shown that reasonably good agreement with the true stress-strain curves was obtained at strain rates ranging from 1000 $s^{-1}$ to 2000 $s^{-1}$. When the strain rate increased by 30%, the peak stress in particular increased by 17%, and the strain also increased by 20%.

구조부재는 정적, 동적 또는 충격과 같은 다양한 하중의 영향을 받고 있다. 결과적으로 이와 같은 하중의 영향이 고려된 재료의 물성치를 획득하기 위해 각 조건에 적합한 실험적 또는 해석적 방법이 수반되어야 한다. 일반적으로 고변형률 속도에서 재료의 기계적 물성을 얻는 방법으로써 홉킨슨 압력봉 시험법(SHPB)이 널리 사용되고 있다. 본 연구에서는 이와 같은 SHPB 시험을 통해 충격 하중 조건에서 알루미늄 합금의 압축변형거동을 고찰하였으며, 실험결과와 해석결과를 비교, 분석하였다. 결론적으로 1000 ~ 2000 $s^{-1}$ 영역에서 진응력-진변형률 곡선을 비교하였을 때 실험 결과와 해석 결과가 잘 일치함을 알 수 있었다. 특히, 변형률 속도가 30% 증가함에 따라 최대유동응력은 17%증가, 변형률은 20% 증가함을 확인하였다.

Keywords

References

  1. Kim, J.T., Cho, C.H., Jeon, J.I., Gimm, H.K., Koo, M.H. and Kim, T.W., 2010, "A Study of the Projectile-Material Shape on Damage and Fracture Behavior of Aluminum Alloys Under High Velocity Impact," Proceeding of 40th Anniversary Conference on the Establishment of Agency for Defence Development, New Special Energy, pp. 371-374
  2. Jena, P.K., Jagtap, N. and Siva Kumar, K. and Balakrishna Bhat, T., 2008, "Some Experimental Studies on Angle Effect in Penetration," International Journal of Impact Engineering, Vol. 37, pp. 489-501
  3. Jeong, D.-T., 1994, "Split Hopkinson Pressure Bar Technique for Stress-Strain Measurement," The Korean Society of Mechanical Engineers Annuals Spring & Fall Conferences, pp. 33-41.
  4. Kuhn, Howard, Medlin and Dana, 1984, "ASM Handbook Volume 8, Mechanical Testing and Evaluation," ASM International Handbook Committee, Vol. 8, pp. 462-476.
  5. Davies, E., 1948, "A Critical Study of the Hopkinson Pressure Bar," Philos. Trans. A, Vol. 204, pp.375-457.
  6. Lee, O. S., Kim, G. K. and Kim, M. S., 2003, "Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading," Journal of Mechanical Science and Technology, Vol. 17, No. 6, pp. 787-795.
  7. Lee, O. S. and Kim, D. H., 2008, "Reliability Estimation and Cynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory," KSME-A, Vol. 32, No. 9, pp.740-753. https://doi.org/10.3795/KSME-A.2008.32.9.740
  8. Moon, W., Seo, S., Lim, J. and Min, O., 2002, "Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate," Journal of Mechanical Science and Technology, Vol. 16, No. 11, pp. 1412-1419.
  9. Ruiz, C. and Mines, RWA. 1985, "The Hopkinson Pressure Bar: An Alternative to the Instrumented Pendulum for Charpy Tests," International Journal of Fracture, Vol. 29, pp. 101-109. https://doi.org/10.1007/BF00034296
  10. Hallquist, J. O., 2006, " LS-DYNA Theory Manual," Livermore Software Technology Corporation.
  11. Shim, J. and Mohr, D., 2009, "Using Split Hopkinson Pressure Bars to Perform Large Strain Compression Tests on Poluurea at Low, Intermediate and High Strain Rates," International Journal of Impact Engineering, Vol. 36, pp. 1116-1127. https://doi.org/10.1016/j.ijimpeng.2008.12.010
  12. Lee, O. S., Choi, H.B. and Kim, H.M., 2011, "High-Temperature Dynamic Deformation of Aluminum Alloys Using SHPB," Journal of Mechanical Science and Technology, Vol. 25, pp.143-148. https://doi.org/10.1007/s12206-010-1106-9
  13. Abotula, S. and Chalivendra, V. B., 2010, "An Experimental and Numerical Investigation of the Static and Dynamic Constitutive Behavior of Aluminium Alloys," Journal of Strain Analysis for Engineering Design, Vol. 45, pp.555-565 https://doi.org/10.1177/030932471004500808