• Title/Summary/Keyword: strength variation

Search Result 1,640, Processing Time 0.032 seconds

Development of Strength and Durability Properties of Latex-Modified Concrete with Rapid-Setting Cement (초속경 시멘트를 사용한 라텍스 개질 콘크리트의 강도발현 및 내구특성)

  • 최성욱;홍창우;김동호;최상릉;장홍균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1029-1034
    • /
    • 2001
  • The purpose of this research is to develop rapid setting cement latex modified concrete (RSLMC) which will be used to overlay bridge deck for maintaining and repairing. The main experimental variables were the types of rapid setting cement and variation of latex and antifoam agent contents were selected as admixture factor, then the properties of workability and strength development and durability properties were investigated. The results of this study show that latex content give increment of a slump due to surface tension in polymer particles and reduce unit weight of water for preservation of workability. In addition, When no and 1.6~3.2% antifoam agent were mixed, 8%, 2.0~3.8% were respectively obtained. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. Rapid chloride permeability and freezing-thawing test carried out. As a results, according to increment of containing ratio antifoamer, strength of RSLMC increase, permeability showed lower value than ignorable 100 coulombs. Also, in the case of more than antifoamer 1.6%, the relativity dynamic modulus is mantained more than 90%, but in case of 0, 5%, it decrease. In consequence, with the view of strength and workability of RSLMC, it is considered that appropriate content ratio of antifoam agent and latex solid are respectively 1.6% by latex weight, 15% by cement weight.

  • PDF

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

Influence of Cement Factor on the Strength Development of Concrete at the Early Age (콘크리트의 초기강도 발현에 미치는 시멘트 요인의 영향)

  • 김광화;김은호;임주혁;김규동;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.737-740
    • /
    • 2003
  • In this study, the influence of cement factor on the early strength gain and the other properties of concrete is discussed. According to the result, the setting time is faster in order of alumina cement(AC), high-early-strength cement(HSC) and ordinary Portland cement(OPC), and when OPC are replaced with HSC and AC, the final setting time is faster than when only OPC is used. At 10% replacement of AC, the instant setting happens. As the particle of cement is minute, setting time is shortened. As the properties of hardened concrete, the time when compressive strength of 5㎫, which the form can be removed, is gained is about 18 and 16 hours in the case of OPC and HSC respectively, and in the case of AC, it is about 5 hours. It also shows 16 hours at the replacing ratio of HSC of 50%, and 26 and 72 hours at the replacing ratio of AC of 5 and 10% respectively. And it shows 21, 16 and 12 hours with variation of fineness of cement, so early strength gain is fast with an increase of fineness. The coefficient of correlation between compressive strength and the rebound value is over 0.97, is very favorable. Therefore, if the rebound value of P type Schmidt hammer is more than 25, it is thought that the side forms can be removed.

  • PDF

Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test (도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가)

  • Seo, Sung-Il;Park, Choon-Soo;Shin, Byung-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Analysis of Process Characteristics by Single Yarn Production in Ring Spinning (링 정방공정에서 단사제조에 의한 공정특성 분석)

  • Lee, Choon-Gil;Oh, Bong-Hyo;Park, Sung-Diuk
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 1997
  • In the single yarn spinning process by the ring spinning system, the finer the fineness of yarn and the lower the twist coefficient, the lower the breaking strength and breaking elongation. The change of yarn specific volume to yarn number agreed with Peirce's formula in the range of Ne 50 to 70, but above that range the values of the experiment are higher than that of the formula. The change of diameter of yarn to the reciprocal of the square root of yarn number agreed with Peirce's formula in the range of under 0.14, but above that value the values of the experiment are higher than that of the formula. In breaking strength variation according to twist constant of single yarn, as the twist coefficient increased, breaking strength increased. At 5.8∼6.0 of twist coefficient the maximum breaking strength was shown, but above that value breaking strength decreased. Breaking elongation also showed a similar tendency. But at 6.0∼6.5 of twist coefficient the maximum breaking elongation was shown. Also spinning tension increased as twist coefficient increased. Twist coefficient, breaking strength and breaking elongation according to the number of coils stayed almost the same. Yarn spinning tension according to the number of coils at the maximum of diameter was the lowest value. The speed of the traveller at the maximum of diameter was the highest value.

  • PDF

Effect of Moisture on Tensile Strength in Sand (모래의 인장강도에 미치는 함수비의 영향)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • An extensive tension experiment was carried out to examine the variation of tensile strength in moist sand having moisture contents in the range of 0.5% < w < 4.0% with newly developed direct tension apparatus. It was observed that tensile strength of sand varied as functions of moisture content, relative density, presence of fines, and level of precompression. Tensile strength increases with increasing moisture content and fines, and this trend is more noticeable at increasing relative densities. However, the influences of relative density and fines on the tensile strength are substantially dependent on the water content. These effects are reduced at low moisture levels (w < 0.5%). The precompression effects also depend on the water content but less on the duration and level of the precompression.

The Influence of Grain Size of Sandy Soil on the Strength and Stiffness of Silicate-Grouted Soil. (사질토의 입경이 물유리계 약액주입권결토에 강도 및 강성에 미치는 영향)

  • Jeong, Hyeong-Sik;Cheon, Byeong-Sik;Ryu, Jae-Il
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.29-38
    • /
    • 1988
  • One of the main objectives of researches for the chemical grouting is to assess the changes in soil properties caused by injection of chemical grout. Especially the changes in the strength properties of soils, such as elastic modulus, shear modulus of ground due to injection of chemical grout has drawn our attention. Since the specific surface changes with variation in the grain size of sandy soil, the influence of grain size of sandy toil on the strength and stiffness of silicate-grouted soil was investicated in this study by earring out uniaxial and triaxial compression tests. It was found that the strength and stiffness of grouted soil increased as the grain size of sandy soil decreases, the possibility of estimating the strength of grouted soil was confirmed through the study of relationship between specific surface of sandy soil and the strength of chemical gel.

  • PDF

A Research Trend on High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌의 전계 세기의 영향에 관한 연구 동향)

  • Yoon, Hee-Kwang;Kim, Chan-Ho;Her, In-Ho;Lee, Jeong-Soo;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1982-1983
    • /
    • 2007
  • In this work, the $TiO_2$ pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties. Formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The ${\beta}$ parameter could be using to insulator particles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the ${\beta}$ parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF

A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film (이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구)

  • Shin Youn-Hak;Kim Myung-Han;Choi Jae-Ha
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.