• Title/Summary/Keyword: strength of materials

Search Result 10,073, Processing Time 0.042 seconds

On the tensile strength of brittle materials with a consideration of Poisson's ratios

  • Hu Guoming;Cho Heechan;Wan Hui;Ohtaki Hideyuki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.603-610
    • /
    • 2003
  • The influence of Poisson's ratio on the tensile strength of brittle materials is neglected in many studies. When brittle materials are loaded in compression or impact, substantial tensile stresses are induced within the materials. These tensile stresses are responsible for splitting failure of the materials. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the state of stress at the center of the particle is obtained. An analysis of the distribution of stresses along the z-axis due to distributed pressures and concentrated forces, and on diametrically horizontal plane due to concentrated forces, shows that it is reasonable to propose the tensile stress at the center of the particle at the point of failure as a tensile strength of the particle. Moreover, the tensile strength is a function of the Poisson's ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it can be proposed as the tensile strength for brittle materials generally. The effect of Poisson's ratio on the tensile strength is discussed.

  • PDF

Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts (분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.406-410
    • /
    • 2011
  • Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

  • Chore, H.S.;Joshi, M.P.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 2015
  • Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials (이종재료의 경사접착이음에 대한 파괴강도의 예측)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

An Experimental Study for Basic Properity of Ultra High-strength Concrete (초고강도 콘크리트의 기초물성에 관한 실험적 연구)

  • Kim Ji-Man;Gong Min-Ho;Yang Dong-Il;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.39-42
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete, the molt universal construction material is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. In particular, it is tendency of that the study for high strength concrete increases and construction example of reinforced concrete (RC) using the high strength concrete partially increases. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various scible materials is used. This study conducted a basic experiment to conclude an adequate selection of materials and to calculate an optimal mixing proportion of those materials to produce High-strength concrete. And also we conducted an experiment to find out basic properties of this concrete such as slump-flow, strength.

  • PDF

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

A study on behavior of steel joints that combine high-strength bolts and fillet welds

  • Chang, Heui-Yung;Yeh, Ching-Yu
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.361-372
    • /
    • 2019
  • In recent years, considerable attention has been paid to the research and development of high-strength steel plates, with particular emphasis on the enhancement of the seismic resistance of buildings and bridges. Many efforts have also been undertaken to improve the properties of high-strength bolts and weld materials. However, there are still different opinions on steel joints that combine high-strength bolts and fillet welds. Therefore, it is necessary to verify the design specifications and guidelines, especially for newly developed 1,400-MPa high-strength bolts, 570-MPa steel plates, and weld materials. This paper presents the results of literature reviews and experimental investigations. Test parameters include bolt strengths, weld orientations, and their combinations. The results show that advances in steel materials have increased the plastic deformation capacities of steel welds. That allows combination joints to gain their maximum strength before the welds have fracture failures. When in combination with longitudinal welds, high-strength bolts slip, come in contact with cover plates, and develop greater bearing strength before the joints reach their maximum strength. However, in the case of combinations with transverse welds, changes in crack angles cause the welds to provide additional strength. The combination joints can therefore develop strength greater than estimated by adding the strength of bolted joints in proportion to those of welded joints. Consequently, using the slip resistance as the available strength of high-strength bolts is recommended. That ensures a margin of safety in the strength design of combination joints.

Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials

  • So, Hyoung-Seok;Janchivdorj, Khulgadai;Yi, Je-Bang;Jang, Hong-Seok;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • To consider the practicality and economic feasibility of developing reactive powder concrete (RPC), the strength and microstructure properties of RPC using ternary pozzolanic materials (silica fume, blast furnace slag, fly ash) were investigated in this study. Through the investigation, it was found that the compressive strength of RPC using ternary pozzolanic materials was increased significantly compared to that of the original RPC containing silica fume only. A considerable improvement in the flexural strength of RPC using ternary pozzolanic materials was found, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser using the ternary pozzolanic materials than the original RPC.