• Title/Summary/Keyword: strength enhancement

Search Result 667, Processing Time 0.025 seconds

Shear Strength Enhancement of Hollow PHC Pile Reinforced with Infilled Concrete and Shear Reinforcement (내부충전 콘크리트와 전단철근을 이용한 중공 PHC말뚝의 전단보강 효과)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2012
  • In order to improve the shear strength of conventional pre-tensioned spun high strength concrete (PHC) pile, concrete-infilled composite PHC (ICP) pile, a PHC pile reinforced by means of shear reinforcement and infilled concrete, is proposed. Two types of specimens were cast and tested according to KS (Korean Standards) to verify the shear strength enhancement of ICP pile. Based on the test results, it was found that the KS method was not suitable due to causing shear failure of ICP pile. However, shear strength enhancement was clearly verified. The obtained shear strength of the ICP pile was more than twice that of conventional PHC pile. In addition, the shear strength of ICP pile reinforced with longitudinal reinforcement was estimated to be more than 2.5 times greater than that of conventional PHC pile. The allowable shear force of ICP pile, which was determined by the allowable stress design process, indicated a large safety factor of more than 2.9 compared to the test results.

Utilizing vacuum bagging process to enhance bond strength between FRP sheets and concrete

  • Abdelal, Nisrin R.;Irshidat, Mohammad R.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • This paper investigates the effect of utilizing vacuum bagging process to enhance the bond behavior between fiber reinforced polymer (FRP) composites and concrete substrate. Sixty specimens were prepared and tested using double-shear bond test. The effect of various parameters such as vacuum, fiber type, and FRP sheet length and width on the bond strength were investigated. The experimental results revealed that utilizing vacuum leads to improve the bond behavior between FRP composites and concrete. Both the ultimate bond forces and the maximum displacements were enhanced when applying the vacuum which leads to reduction in the amount of FRP materials needed to achieve the required bond strength compared with the un-vacuumed specimens. The efficiency of the enhancement in bond behavior due to vacuum highly depends on the fiber type; using carbon fiber showed higher enhancement in the bond strength compared to the glass fiber when vacuum was applied. On the contrary, specimens with glass fiber showed higher enhancement in the maximum slippage compared to specimens with carbon fibers. Utilizing vacuum does not affect the debonding failure modes but lead to increase in the amount of attached concrete on the surface of the debonded FRP sheet.

A Study on theEnhancement of Strength of laterally Confined Concrete by Carbon-Fiber Sheet (탄소섬유쉬트로 횡구속된 콘크리트의 강도 증진에 관한 연구)

  • Jeong, Sin-Uk;Ryu, Cheon;Kim, Eu-Sung;Kim, Wha-Il;Kim, Sang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.462-471
    • /
    • 1997
  • In this study, we studied the compression test of laterally confined concrete cylinder by the carbon-fiber sheet(CFS), and compared the test results with previous test results and relationships by other researchers. Our objectives is to find the stress-strain characteristics and the enhancement of strength of the confined concrete to the lateral pressure offered by CFS.

  • PDF

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

The Fundamental Study on Development of Concrete-Product by Using Recycled Concrete Powder (재생미분말을 사용한 콘크리트 제품 개발에 대한 기초적인 연구)

  • Sun Joung-Soo;Kim Ha-Seok;Kwag Eun-Gu;Jun Myoung-Hoon;Kim Bong-Ju;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.19-22
    • /
    • 2006
  • The quantity of Recycled concrete powder is increased, because it hal been ever so often crushing for production of a good quality recycled aggregates This Study is on the Development of Concrete-Product by Using Recycled Concrete Powder and alto for know performance of concrete-producted having low water contents and it is to know for all of performance of concrete-producted having low water contents The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa But It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading. The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa. It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading.

  • PDF

The Effect of Task-oriented Arm Movements and Muscle Enhancement Program Using Elastic Bands on Upper Limb Muscle Strength and Activities of Daily Living of Mitochondrial Myopathy Patient -Single subject design- (Mitochondrial Myopathy 환자에서 과제지향적 상지운동과 탄성밴드를 이용한 기능적 근력증진 프로그램이 상지근력과 일상생활활동에 미치는 영향 -단일사례연구-)

  • Park, Hyung-Ki;Lee, Kang-Sung
    • PNF and Movement
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • Purpose : The purpose of this study was to the effect of task-oriented arm movements and muscle enhancement program using elastic bands on limb muscle strength and activities of daily living of mitochondrial myopathy patient. Method : Single-subject experimental research design was applied to. AB Design was adopted. The study period was approximately four weeks. A baseline period of the three sessions of the experiment, the treatment period B, 3 sessions were conducted. Baseline period to observe the patient's daily life bardel index was measured as an independent feature, MMT as a limb muscle strength was assessed by measuring early. During the period of treatment with serabaendeu limb strength training 30 minutes after the break five minutes after the treatment using MMT limb muscle strength were evaluated. Task-oriented exercise program, and who exercise a week as a treatment was carried out in 30 minutes. Result : All of the scores for each sessional period of treatment when compared to base line and upper limb muscle strengthening exercises on the subjects that did not change significantly. Conclusion : If the muscles and nervous system involvement in patients with symptoms such as muscle weakness and paralysis of upper extremity functional use is difficult.

  • PDF

The Study of the Strength Prediction of RC Beam with Externally bonded Carbon Fiber Reinforced Plate (탄소섬유 보강판(CFRP)으로 보강된 철근콘크리트보의 강성예측에 관한 연구)

  • 한상훈;최홍식;홍기남;신동주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.763-768
    • /
    • 2000
  • The purpose of this paper is to predict the flexural strengthening of reinforced concrete beams by the external bonding of carbon fiber reinforced plate(CFRP) to the tension face of the beam. Used computational equation is derived by relation of stress an strain. This equation is applied to four-nondamage beam and tow-preloading beam. Six scale beams were tested to evaluate the strength enhancement provided by the CFRP. And describes the strength enhancement provided to the flexural capacity of reinforced concrete beam by the external bonding of CFRP. An inelastic section analysis procedure was developed that accurately predicts the load displacement response of the retrofitted beams.

  • PDF

A study on the repeated breakdown field strength of compressed $SF_{6}$ in uniform field perturbed by protrusion (교란된 평등전계에서 고기압 $SF_{6}$ 가스의 연속절연 파괴강도에 관한 연구)

  • 이동인
    • 전기의세계
    • /
    • v.29 no.2
    • /
    • pp.129-132
    • /
    • 1980
  • For large gas-insulated systems, the conductor utilized possess some degree of surface roughness which locally enhances the applied field at highpressure in $SF_{6}$. In order to investigate the effect of field enhancement on the breakdown field strength, the spheric protrusion was employed which gives a quantitative analysis on field enhancement. For further investigations on the breakdown level and polarity effect in $SF_{6}$, the repeated breakdown tests were performed with d.c. voltage at pressures up to about 4 bar. The experimental results show that the breakdown level does vary noticeably due to successive voltage applications and the breakdown field strength measured for a test gap with the cathode protrusion is markedly lower than that determined from the identical anode protrusion.

  • PDF

Stress-strain response on the confined normal and high-strength concrete cylinders containing steel fiber under compression

  • Purwanto;Antonius;Lisa Fitriyana
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.233-243
    • /
    • 2024
  • The behavior of confined steel fiber-reinforced concrete (including confinement models) with compressive strengths ranging from normal to high strength is still rarely studied. This paper presents the results of an investigation of fifteen confined concrete cylinders containing steel fiber. The design parameters evaluated in the experiment included concrete compressive strength (covers normal to high strength), volume fraction of steel fiber and hoop spacing. The main objective of this study was to evaluate the behavior of confined steel fiber concrete by reviewing several design parameters, such as concrete strength (normal to high strength). It is then developed to be an analytical stress-strain expression for confined steel fiber concrete. The experimental program was carried out by making cylindrical specimens with a diameter of 100 mm and a height of 200 mm. The cylindrical test object is compressed in a monotonic uniaxial loading. Experimental results have shown steel fiber in concrete has an important role in increasing the compressive strength and strain of cylindrical concrete without steel fiber. In addition, the value of strength enhancement of confined concrete (K) along with increasing fiber fraction volume; which applies to normal to high-strength concrete. The value of K also increases if the compressive strength of the concrete tends to decrease and the spacing of the hoops is closer. The comparison of stress-strain behavior between the confined steel fiber concrete proposed by other researchers and the experimental results in general significantly different in post-peak response. The statistical analysis indicates that the value of Coefficient of Variation for the confinement model by Campione is the closest compared to other existing confinement models in predicting the values of K and Toughness Index. Furthermore, the analytic stress-strain expression of confined steel fiber concrete was developed by adopting and modifying several equations from the present models. The proposed analytical expression is then verified with the experimental results. The results of the verification show that the stress-strain behavior of confined steel fiber concrete is relatively close.