DOI QR코드

DOI QR Code

Stress-strain response on the confined normal and high-strength concrete cylinders containing steel fiber under compression

  • Purwanto (Universitas Semarang, Department of Civil Engineering) ;
  • Antonius (Universitas Islam Sultan Agung, Department of Civil Engineering) ;
  • Lisa Fitriyana (Universitas Islam Sultan Agung, Department of Civil Engineering)
  • Received : 2023.06.05
  • Accepted : 2024.08.27
  • Published : 2024.04.25

Abstract

The behavior of confined steel fiber-reinforced concrete (including confinement models) with compressive strengths ranging from normal to high strength is still rarely studied. This paper presents the results of an investigation of fifteen confined concrete cylinders containing steel fiber. The design parameters evaluated in the experiment included concrete compressive strength (covers normal to high strength), volume fraction of steel fiber and hoop spacing. The main objective of this study was to evaluate the behavior of confined steel fiber concrete by reviewing several design parameters, such as concrete strength (normal to high strength). It is then developed to be an analytical stress-strain expression for confined steel fiber concrete. The experimental program was carried out by making cylindrical specimens with a diameter of 100 mm and a height of 200 mm. The cylindrical test object is compressed in a monotonic uniaxial loading. Experimental results have shown steel fiber in concrete has an important role in increasing the compressive strength and strain of cylindrical concrete without steel fiber. In addition, the value of strength enhancement of confined concrete (K) along with increasing fiber fraction volume; which applies to normal to high-strength concrete. The value of K also increases if the compressive strength of the concrete tends to decrease and the spacing of the hoops is closer. The comparison of stress-strain behavior between the confined steel fiber concrete proposed by other researchers and the experimental results in general significantly different in post-peak response. The statistical analysis indicates that the value of Coefficient of Variation for the confinement model by Campione is the closest compared to other existing confinement models in predicting the values of K and Toughness Index. Furthermore, the analytic stress-strain expression of confined steel fiber concrete was developed by adopting and modifying several equations from the present models. The proposed analytical expression is then verified with the experimental results. The results of the verification show that the stress-strain behavior of confined steel fiber concrete is relatively close.

Keywords

Acknowledgement

This paper results from research funded by Universitas Islam Sultan Agung-Indonesia (Contract No.322/B.1/SALPPM/IX/2022) in collaboration with Universitas Semarang-Indonesia and fib-Indonesia. The support received for this research is gratefully acknowledged.

References

  1. Abubakar, A.U. and Akcaoglu, T. (2021), "Influence of pre-compression on crack propagation in steel fiber reinforced concrete", Adv. Concrete Constr., Int. J., 11(3), 261-270. https://doi.org/10.12989/acc.2021.11.3.261
  2. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI-318-19) and Commentary (318R-19), American Concrete Institute, Farmington Hills, MI, USA.
  3. Al-Tikrite, A. and Hadi, M.N.S. (2018), "Influence of steel fibres on the behaviour of RPC circular columns under different loading conditions", Structures, 14, 111-123. https://doi.org/10.1016/j.istruc.2018.03.002
  4. Amariansah, W. and Karlinasari, R. (2019), "The influence of steel fiber on the stress-strain behavior of confined concrete", J. Adv. Civil Environ. Eng., 2(1), 46-52. https://doi.org/10.30659/jacee.2.1.46-52
  5. Antonius (2015), "Strength and energy absorption of high-strength steel fiber concrete confined by circular hoops", Int. J. Technol., 6(2), 217-226. https://doi.org/10.14716/ijtech.v6i2.860
  6. Antonius, Imran, I. and Setiyawan, P. (2017), "On the confined high-strength concrete and need of future research", Procedia Eng., 171, 121-130. https://doi.org/10.1016/j.proeng.2017.01.318
  7. Antonius, Purwanto and Harprastanti, P. (2019), "Experimental study of the flexural strength and ductility of post burned steel fiber RC beams", Int. J. Technol., 10(2), 428-437. https://doi.org/10.14716/ijtech.v10i2.2097
  8. Antonius, Karlinasari, R., Purwanto and Widhianto, A. (2020), "Shear strength and deformation of steel fiber reinforced concrete beams after fire", Adv. Concrete Constr., Int. J., 10(2), 105-111. https://doi.org/ 10.12989/acc.2020.10.2.105
  9. Aoude, H., Hosinieh, M.M., Cook, W.D. and Mitchell, D. (2014), "Behaviour of rectangular columns constructed with SCC and steel fibers", J. Struct. Eng., 141(8), 04014191. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001165
  10. ASTM C 39-94 (1996), Test Method for Compressive Strength of Cylindrical Concrete Specimens. Annual Books of ASTM Standards, USA.
  11. Campione, G. (2002), "The effects of fibers on the confinement models for concrete columns", Can. J. Civil Eng., 29, 742-750. https://doi.org/10.1139/l02-066
  12. Cholida, N.F.F., Antonius and Enggartiasto, L. (2022), "A comparative study of the confinement models of high-strength steel fiber concrete by statistical approach", J. Civil Eng. Forum, 8(3), 309-320. https://doi.org/10.22146/jcef.4029
  13. Ezeldin, A.S. and Balaguru. P.N. (1992), "Normal- and high-strength fiber-reinforced concrete under compression", J. Mater. Civil Eng., 4, 415. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  14. Garcia-Taengua, E., Marti-Vargas, J.R. and Serna, P. (2014), "Splitting of concrete cover in steel fiber reinforced concrete: semi-empirical modeling and minimum confinement requirements", Constr. Build. Mater., 66, 743-751. https://doi.org/10.1016/j.conbuildmat.2014.06.020
  15. Gomes, L.D. dos Santos, Oliveira, D.R.C., Neto, B.N. de Moraes, Medeiros, A.B., Macedo, A.N. and Silva, F.A.C. (2018), "Experimental analysis of the efficiency of steel fibers on shear strength of beams", Latin Am. J. Solids Struct., 15, 1-16. https://doi.org/10.1590/1679-78254710
  16. Ganesan, N. and Murthy, J.V.R. (1990), "Strength and behavior of confined steel fiber reinforced concrete columns", ACl Mater. J., 87(3), 221-227. https://www.concrete.org/publications/acimaterialsjournal.aspx https://doi.org/10.14359/2103
  17. Han, A.L., Antonius and Okiyarta, A.W. (2015), "Experimental study of steel fiber reinforced concrete beams with confinement", Procedia Eng., 125, 1030-1035. https://doi.org/10.1016/j.proeng.2015.11.158
  18. Hsu, L.S. and Hsu, C.T. (1994), "Stress-strain behavior of steel-fiber high-strength concrete under compression", ACI Struct. J., 91(4), 448-457. https://doi.org/10.14359/4152
  19. Indonesian National Standard, SNI 2847-2019, Requirements of Structural Concrete for Buildings (in Indonesian).
  20. Indonesian National Standard, SNI 7656:2012, Procedures of Mixed Selection for Normal Concrete, Heavy Concrete and Mass Concrete (in Indonesian).
  21. Jang, S.J. and Yun, H.D. (2018), "Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete", Compos. Struct., 185, 203-211. https://doi.org/10.1016/j.compstruct.2017.11.009
  22. Junior, L.A.O., do Santos Borges, V.E., Danin, A.R. and Machado, D.V.R. (2010), "Stress-strain curves for steel fiber-reinforced concrete in compression", Revista Materia, 15(2), 260-266. https://doi.org/10.1590/S1517-70762010000200025
  23. Liao, W.C., Perceka, W. and Liu, E.J. (2015), "Compressive stress-strain relationship of high strength steel fiber reinforced concrete", J. Adv. Concrete Technol., 13, 379-392. https://doi.org/10.3151/jact.13.379
  24. Lu, X., Zhang, Y. and Zhang, H. (2018), "Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions", Eng. Struct., 171, 247. https://doi.org/10.1016/j.engstruct.2018.05.068
  25. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  26. Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Constr., Int. J., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367
  27. Naeimi, N. and Moustafa, M.A. (2021), "Analytical stress-strain model for steel spirals-confined UHPC", Compos. Part C: Open Access, 5, 100130. https://doi.org/10.1016/j.jcomc.2021.100130
  28. Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel-fiber reinforced concrete under compression", Cement Concrete Compos., 21, 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  29. Ou, Y.C., Tsai, M.S., Liu, K.Y. and Chang, K.C. (2012), "Compressive behavior of steel fiber reinforced concrete with a high reinforcing index", J. Mater. Civil Eng., 24, 207-215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
  30. Pantazopoulou, S.J. and Zanganeh, M. (2001), "Triaxial tests of fiber-reinforced concrete", J. Mater. Civil Eng., 13(5), 340-348. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:5(340)
  31. Paultre, P., Eid, R., Langlois, Y. and Levesque, Y. (2010), "Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression", J. Struct. Eng., 136(10), 1225-1235. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000211
  32. Purwanto, Antonius and Setiyawan, P. (2021), "Stress-strain behavior of normal and high-strength steel fiber concrete post burning", Int. J. GEOMATE, 21(85), 61-70. https://doi.org/10.21660/2021.85.j2211
  33. Rabi, M., Cashell, K.A., Shamass, R. and Desnerck, P. (2020), "Bond behaviour of austenitic stainless steel reinforced concrete", Eng. Struct., 221 p. 111027. https://doi.org/10.1016/j.engstruct. 111027
  34. Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  35. Sivakamasundari, S., Daniel, A.J. and Kumar, A. (2017), "Study on flexural behavior of steel fiber RC beams confined with biaxial geo-grid", Procedia Eng., 173, 1431-1438. https://doi.org/10.1016/j.proeng.2016.12.206.
  36. Usman, M., Farooq, Syed H., Umair, M. and Hanif, A. (2020), "Axial compressive behavior of confined steel fiber reinforced high strength concrete", Constr. Build. Mater., 230, 117043. https://doi.org/10.1016/j.conbuildmat.2019.117043
  37. Zaidi, K.A., Sharma, U.K., Bhandari, N.M. and Bhargava, P. (2016), "Postheated model of confined high strength fibrous concrete", Adv. Civil Eng., Article ID 5659817. https://doi.org/10.1155/2016/5659817