• Title/Summary/Keyword: strength characteristic

Search Result 1,460, Processing Time 0.035 seconds

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid (젖산 및 글리콜산에서 합성된 PLGA 멤브레인의 특성과 생분해성에 관한 연구)

  • Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2958-2965
    • /
    • 2015
  • The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

Creep characteristic of Mg alloy at high temperature (고온에서 마그네슘 합금의 크리이프 특성)

  • An, Jung-O;Park, Kyong-Do;Kwak, Jae-Seob;Kang, Dae-Min
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

The Analysis of Transmission Power Control Model for Energy Efficiency in Body Sensor Systems (에너지 효율을 위한 인체 센서 시스템의 전송 전력 조절 모델 분석)

  • Hong, Jin-A;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In wireless body sensor system(WB-SNSs), unlike existing sensor network system, the size of device is small and amount of battery is considerably limited. And various channel environments can be made by link channel characteristic, human movements, sensor placements, transmission power control(TPC) algorithms and so on. In this paper, therefore we take diverse experiments with totally considerated environments to overcome these restrictions and to manage the energy efficiently and find the value of target received signal strength indicator(RSSI) based on diverse factors such as human movements, sensor placements, and TPC algorithms. And we conduct analysis in terms of energy consumption and packet delivery rate(PDR) based on the experimental results. Through these analysis, we compare and evaluate the efficiency according to setup values of Target RSSI and Target RSSI range suitable for wireless body sensor network system.

Review of Spatting Effect on Concrete Element in Fire (화재시 콘크리트 요소 폭렬영향성 고찰)

  • Kim, Hyung-Jun;Han, Sang-Hoon;Choi, Seng-Kwan
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.54-63
    • /
    • 2007
  • Concrete is generally accepted to have good inherent fire resistance. It mainly relies on the assumption that concrete has low heat-transfer characteristic and spatting does not occur during the course of a fire. However, the significant numbers of fire accidents have shown in recent years that incidence of spatting has caused sever damages to many structures. This review has systematically investigated the behaviour of concrete in fire, including phenomenon of spatting, with respect to the theorical consideration and experimental results. Explosive spatting is caused by the build-up of water vapor pressure in concrete subjected to increasing temperatures. When this pressure exceeds the tensile strength of the concrete over a fire-exposed area, explosive spatting can result in a typical temperature range between $200^{\circ}C\;and\;400^{\circ}C$. The major functions are known to be moisture content, pore pressure, load ratio, and heating regime.

Platform development of adaptive production planning to improve efficiency in manufacturing system (생산 시스템 효율성 향상을 위한 적응형 일정계획 플랫폼 개발)

  • Lee, Seung-Jung;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 2011
  • In the manufacturing system, production-planning is very important in effective management for expensive production facilities and machineries. To enhance efficiency of Manufacturing Execution System(MES), a manufacturing system that reduces the difference between planning and execution, certain production-planning needs a dispatching rule that is properly designed for characteristic of work information and there should be a appropriate selection for the rule as well. Therefore, in this paper dispatching rule will be selected by several simulations based on characteristics of work information derived from process planning data. By constructing information that are from simulation into ontology, one of the knowledge-based-reasoning, production planning platform based on the selection of dispatching rule will be demonstrated. The platform has strength in its wider usage that is not limited to where it is applied. To demonstrate the platform, RacerPro and Prot$\acute{e}$g$\acute{e}$ are used in parts of ontology reasoning, and JAVA and FlexChart were applied for production-planning simulation.

The Effect of $C_2Cl_6$ Addition on Surface Ignition and Oxidation of Molten AM100A Mg alloy (마그네슘 합금 용탕 표면 산화 및 발화에 대한 $C_2Cl_6$의 영향)

  • Choi, Seung-Hwa;Kim, Dae-Hwan;Kim, Hee-Kyung;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.231-234
    • /
    • 2010
  • The effect of $C_2Cl_6$ for preventing to the surface oxidation and ignition of molten Mg alloy was studied with metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The alloy used for this study was AM100A Mg casting alloy with high strength. In order to investigate the surface protective characteristic of this molten alloy by $C_2Cl_6$ addition, we added them into molten AM100A alloy at $700^{\circ}C$ and then the melts were slowly cooled under a protective atmosphere of air containing Ar gas and $C_2Cl_6$ flux addition. The result found that the surface oxidation and ignition reaction of molten AM100A Mg alloy by adding $C_2Cl_6$ flux was more slowly occurred than that of the only a protective atmosphere of containing Ar gas with increasing time. This result was due to a dense protective film formed containing $MgCl_2$ on surface of molten Mg alloy during casting and solidification. The $MgCl_2$ was formed by a reaction of $C_2Cl_6$ with molten Mg.

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

A Study on Load Carrying Capacity of Ancient Stone Arch Bridge (고대 석조아치교량의 내하력에 관한 연구)

  • 정형식;황영철
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.31-40
    • /
    • 1992
  • The arch of an ancient stone arch bridge consists of blocky stone blocks. For the purpose of estimation of load carrying capacity of a stone bridge, the mechanically frail discontinuities between stone blocks should be taken account of. Since the current way of analysis regards the stone arch as a continuous member, the characteristic of discontinuties is not considered. In this paper, an ancient stone arch bridge is analyzed and load carrying capacity is estimated by Finite Element Method with the discontinuties between blocks being modelled as interface elements. From the result of the study, it is shown that the load carrying capacity of a stone arch bridge is dependent of friction angle and shear stiffness between arch blocks rather than compressive strength of arch block itself and the stone arch bridge of granite is more influenced by shear stiffness than friction angle. The load carrying capacity of HONG bridge of HEUNG GUK temple analyzed in this paper is estimated as that of a third grade bridge.

  • PDF

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.