DOI QR코드

DOI QR Code

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid

젖산 및 글리콜산에서 합성된 PLGA 멤브레인의 특성과 생분해성에 관한 연구

  • Received : 2014.12.27
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.

공중합체인 PLGA는 생분해성 고분자로서 의료용 이식재료로 사용되고 있으며, 이를 이용한 멤브레인은 양호한 생분해 특성 및 지속적 약물 전달체로서 치조골 유도제로 적용할 수 있다. 본 연구는 락티드, 글리콜리드 합성 및 공중합과정을 거쳐 상전이법을 이용하여 PLGA 멤브레인을 제조하였으며, 멤브레인의 광학적(NMR, IR), 기계적(인장강도), 열적(DSC)특성을 조사하였다. 또한 PLGA 멤브레인의 생분해 특성은 PBS (Phosphate Buffered Solution)이 담긴 항온조($60^{\circ}C$) 내에서 분해시간에 따른 표면분해 정도, 멤브레인의 질량변화 및 용액의 pH 변화로 측정하였다.

Keywords

References

  1. Lakshmi S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials.Prog. Polym. Sci. 32 (2007) 762-.798 https://doi.org/10.1016/j.progpolymsci.2007.05.017
  2. Domb AJ, Wiseman DM, editors. Handbook of Biodegradable Polymers. Boca Raton: CRC Press; 1998.
  3. Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed 1995;6:775-.95. https://doi.org/10.1163/156856295X00175
  4. John C. Middleton, Arthur J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 (2000) 2335}2346 https://doi.org/10.1016/S0142-9612(00)00101-0
  5. Heller J, Daniels AU. Poly(orthoesters). In: Shalaby SW, editor. Biomedical polymers. Designed to degrade systems. New York: Hanser, 1994. p. 35}68.
  6. Marina Sokolsky-Papkov, Kapil Agashi, Andrew Olaye, Kevin Shakesheff, Abraham J. Domb. Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews 59 (2007) 187-206 DOI: http://dx.doi.org/10.1016/j.addr.2007.04.001
  7. C.S. Proikakis, N.J. Mamouzelos, P.A. Tarantili, A.G. Andreopoulos. Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polymer Degradation and Stability 91 (2006) 614e619. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.060
  8. Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog Polym Sci 1998; 23(3):563e80. https://doi.org/10.1016/S0079-6700(97)00048-8
  9. C.S. Proikakis, N.J. Mamouzelos, P.A. Tarantili, A.G. Andreopoulos. Swelling and hydrolytic degradation of poly(D,L-lactic acid) in aqueous solutions. Polymer Degradation and Stability 91 (2006) 614e619 DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.060
  10. Griffith LG. Polymeric biomaterials. Acta Mater 2000;48(1):263e77. https://doi.org/10.1016/S1359-6454(99)00299-2
  11. Merkli A, Tabatabay C, Gurny R, Heller J. Biodegradable polymers for the controlled release of ocular drugs. Prog Polym Sci 1998;23(3): 563e80. DOI: http://dx.doi.org/10.1016/S0079-6700(97)00048-8
  12. Bouissou, C.; Rouse, J.J.; Price, R.; van der Walle, C.F. The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release. Pharm. Res. 2006, 23, 1295-1305. DOI: http://dx.doi.org/10.1007/s11095-006-0180-2
  13. Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lacti de-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475--2490. DOI: http://dx.doi.org/10.1016/S0142-9612(00)00115-0
  14. Ruhe, P.Q.; Hedberg, E.L.; Padron, N.T.; Spauwen, P.H.; Jansen, J.A.; Mikos, A.G. rhBMP-2 release from injectable poly (D,L -lactic-co-glycolic acid)/calcium-phosphate cement composites. J. Bone Jt. Surg. 2003, 85, 75--81.
  15. Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999.
  16. Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules 2005;6: 538-546. DOI: http://dx.doi.org/10.1021/bm0494702
  17. Lakshmi S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32 (2007) 762-98 DOI: http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017
  18. Schliecker G, Schmidt C, Fuchs St, Kissel T. Characterization of a homologous series of D,L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 2003;24(21):3835e44 https://doi.org/10.1016/S0142-9612(03)00243-6
  19. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deli Rev 1997; 28:5-24. DOI: http://dx.doi.org/10.1016/S0169-409X(97)00048-3
  20. Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005;26:1925-133. DOI: http://dx.doi.org/10.1016/j.biomaterials.2004.06.021
  21. Hoon You, Eun-Ung Lee, You-Kyoung Kim, Bum-Chul Kim, Jin-Young Park, Hyun-Chang Li m, Jung-Seok Lee, InSup Noh, Ui-Won Jung and Seong-Ho Choi. Biocompatibility and resorption pattern of newly developed hyaluronic acid hy drogel reinforced three-layer poly (lactid e-co-glycolide) membrane: histologic observation in rabbit calvarial defect model. You et al. Biomaterials Research 2014, 18:12. DOI: http://dx.doi.org/10.1186/2055-7124-18-12
  22. Bruno Gasparini Betiatto de Sousa, Gabrielle Pedrotti, Ana Paula Sponchiado1, Rafael Schlogel Cunali, Aguedo Aragones, Joao Rodrigo Sarot, Joao Cezar Zielak, Barbara Pick Ornaghi, Moira Pedroso Leao. Analysis of tensile strength of poly(lactic-coglycolic acid) (PLGA) membranes used for guided tissue regeneration. Electronic version: 1984-5685 RSBO. 2014 Jan- Mar;11(1): 59-65.