Abstract
The effect of $C_2Cl_6$ for preventing to the surface oxidation and ignition of molten Mg alloy was studied with metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The alloy used for this study was AM100A Mg casting alloy with high strength. In order to investigate the surface protective characteristic of this molten alloy by $C_2Cl_6$ addition, we added them into molten AM100A alloy at $700^{\circ}C$ and then the melts were slowly cooled under a protective atmosphere of air containing Ar gas and $C_2Cl_6$ flux addition. The result found that the surface oxidation and ignition reaction of molten AM100A Mg alloy by adding $C_2Cl_6$ flux was more slowly occurred than that of the only a protective atmosphere of containing Ar gas with increasing time. This result was due to a dense protective film formed containing $MgCl_2$ on surface of molten Mg alloy during casting and solidification. The $MgCl_2$ was formed by a reaction of $C_2Cl_6$ with molten Mg.