• Title/Summary/Keyword: stream water treatment

Search Result 322, Processing Time 0.024 seconds

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

A Study on the Biodegradation of Synthetic Detergents of Major Streams in Seoul (서울시내 주요지천수중 합성세제의 분해도에 관한 연구)

  • 이병인
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.95-102
    • /
    • 1990
  • Since the production of synthetic detergents in 1966, the demand of detergents increased rapidly during the past in Korea. Its production which was solely for donlestic consumption leaped from 402 tons in 1966 to 259387 tons in 1989. Practically all of these products were the anionic detergents primarily sodium salts of Alkyl Benzene Sulfonate(ABS). ABS persists for long periods in stream because of its resistance to triodegradation. Therefore synthetic detergents have been considered major contributors to water pollution. The detergents give a raise to be noted is foaming at sewage treatment plant and the drinking water contaminated by detergents have often been accompanying taste and odor. So the biodegradable Linear Alkyl benzene Sulfonate(LAS) has been adapted as the substituents for the Alkyl Benzene Sulfonate (ABS) since the 1980. However, the Inassive bubbles stemmed from use of synthetic detergents in the sewage treatment plant and the branch of tile Han River had been reported. Therefore, this investigation less undertaken so as to know the pollution of detergents in domestic sewage and the receiving river, and determine the biodegradation of synthetic detergents since ABS has been replaced by LAS in 1980. The study results on the pollution and biodegradation of synthetic detergents were as follows . 1. The major streams in Seoul were contaminated by synthetic detergents. The concentration of detergents were 2.48 mg/l of Anyangchon. 2. The biodegradation were determined by spontaneous settling and aeration. Since the LAS was substitute for ABS in 1980, detergents was more easy to biodegradable. The reduction ratio of Tanchon, Chungranchon, and Anyangchon were 15% , 11% and 16% by the settling and 76%, 77% and 82% by aerations for 5 days.

  • PDF

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon;Park, Ki Young;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2017
  • This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Chemical Properties of Peunggang River and Effect of Irrigation Source on the Growth of Tomato and Cucumber (서낙동강 유역 평강천의 수질 특성과 용수원에 따른 토마토 및 오이의 생육)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2007
  • This study was conducted to analysis the chemical properties of Peunggang river and investigate the effect of irrigation sources on the growth of tomato and cucumber. The salt concentration in Peunggang river was high by $3.22{\sim}3.62dS{\cdot}m^{-1}s$ from March to May and lower gradually from April to February of next year, which was also lower in upper stream than in middle or low stream of Peunggang river. The growth such as plant height, fresh weight and dry weight in tomato and cucumber was better in drain water and tap water irrigation than in PR water (Peunggang river) irrigation. Mean fruit weight was highest in the tap water, and that of cucumber was no significance in the treatments. The number of setting fruit was lower in the PR water than in the treatments, and which was no significance between rain water and tap water. The yield of tomato and cucumber was found to be highest by 10,594 and 11,826 kg/10a in tap water, respectively and also lowest in the PR water among the three treatments. The fruit quality, soluble solids of tomato shows a tendency to increase in the PR water as compared with the other treatment, and the rate of blossom-end rote was higher by 13.6% in the PR water. T-N and P content of tomato and cucumber were no significance in the treatments. Ca content was lowest, but Na content highest in the PR water. It was thought that a rain water and tap water as alternative irrigation source of a PR water were proper.

Three Cases of Pulmonary Paragonimiasis in a Family after Ingestion of Raw Fresh-water Crayfishes caught in a Stream of Wolchulmountain (월출산 민물가재 생식에 의한 한 가족내 폐흡충증 3례)

  • Lee, Hyun Jung;Sun, Gyu Geun;Na, Kyung Hee;Park, Sun Young;Kim, Eun Young;Kim, Kyoung Sim;Kim, Yong Wook;Kim, Suk Il
    • Pediatric Infection and Vaccine
    • /
    • v.9 no.2
    • /
    • pp.222-229
    • /
    • 2002
  • Human infection with the lung fluke Paragonimus westermani has become rare in Korea. Human paragonimiasis is caused by eating raw fresh-water crayfishes or crabs infected with larval metacercariae. Recently, we experienced three cases of pulmonary paragonimiasis in a family. They ate raw fresh-water crayfishes that lived in a stream in Wolchulmountain. All the parients had hypereosinophilia and pulmonary infiltrates with pleural effusion or hydropneumothorax, which did not improve on antibiotics. Ingestion of raw crayfishes was a clue for paragonimiasis. Positive results were shown both on intradermal skin test and ELISA for Paragonimus westermani specific IgG. After treatment with praziquantel, the patients showed an improvement. This is the first familial human paragonimiasis, reported from Wolchulmountain in Chonnam Province where there had been no previous cases of paragonimiasis.

  • PDF

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

Effects of Plant-mineral Composites (PMC) on the Water Quality, Plankton Community and Microcystin-LR in Eutrophic Waters (식물-광물 혼합제가 부영양 수체의 수질, 플랑크톤 및 microcystin-LR에 미치는 영향)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Park, Chae-Hong;Kwon, Dae-Yul;Park, Hye-Jin;Mun, Byeong-Cheon;Mun, Byeong-Jin;Choi, In-Chel;Kim, Nan-Young;Min, Han-Na;Park, Myung-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.347-357
    • /
    • 2011
  • We examined two reservoirs (Inkyung res. and Joongang res.) and two streams (Kyungan str. and Jecheon str.), all of which were eutrophic, during the 2010 warm season, to evaluate the water quality improvement activity (WQIA) of plant-mineral composite (PMC), which was previously developed to control suspended solids, including cyanobacterial bloom (Kim et al., 2010). We simultaneously measured both solid (S-MCLR) and dissolved microcystin-LR (D-MCLR), before and after PMC treatment, in the Joongang reservoir. Taking water body size and volume into account, we conducted the whole-scale experiment in the Inkyung reservoir, and mesocosm-scale experiments in the other three systems. The WQIAs of PMC were found to be comparatively high in SS (70~81%), TP (75~91%), BOD (65~91%), Chl-a (88~98%), phytoplankton (84~92%) and zooplankton (68~88%), except for the Kyungan stream, which was below 45% in all parameters. After PMC treatment, the concentrations of both SMCLR (47%) and D-MCLR (96%) decreased within two days, suggesting a mitigation possibility of hazardous chemicals such as agrochemicals and endocrine disrupters in the aquatic ecosystem. Our results collectively indicate that PMC is a useful agent to control suspended solids, including nuisance cyanobacterial bloom and their exudates, in an undisturbed water system with a long residence time.