DOI QR코드

DOI QR Code

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon (Department of Environment and Energy, Sejong University) ;
  • Park, Ki Young (Department of Civil and Environmental System Engineering, Konkuk University) ;
  • Cho, Jinwoo (Department of Environment and Energy, Sejong University)
  • Received : 2016.07.04
  • Accepted : 2016.10.12
  • Published : 2017.03.25

Abstract

This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.

Keywords

Acknowledgement

Supported by : Korea Ministry of Environment

References

  1. Al-Amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membr. Sci., 303, 4-28. https://doi.org/10.1016/j.memsci.2007.06.002
  2. Alkhudhiri, A., Darwish, N. and Hial, N. (2012), "Membrane distillation: a comprehensive review", Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027
  3. Alves, V. and Coelhoso, I. (2006), "Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study", J. Food Eng., 74(1), 125-133. https://doi.org/10.1016/j.jfoodeng.2005.02.019
  4. Bader, M. (2005), "A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste", J. Hazard. Mater., 121(1), 89-108. https://doi.org/10.1016/j.jhazmat.2005.01.017
  5. Camacho, L.M., Dumee, L., Zhang, J., Li, J.D., Duke, M., Gomez, J. and Gray, S. (2013), "Advances in membrane distillation for water desalination and purification applications", Water, 5(1), 94-196. https://doi.org/10.3390/w5010094
  6. Chang, H., Hung, C.Y., Chang, C.L., Cheng, T.W. and Ho C.D. (2015), "Optimization of three small-scale solar membrane distillation desalination systems" Membr. Water Treat., 6(6), 451-476. https://doi.org/10.12989/mwt.2015.6.6.451
  7. Chen, X., Yang, X., Wang, R. and Fane, A.G. (2013), "Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation", Desalination, 308, 47-55. https://doi.org/10.1016/j.desal.2012.07.018
  8. Curcio, E. and Drioli, E. (2005), "Membrane distillation and related operations-a review", Separ. Purif. Rev., 34(1), 35-86. https://doi.org/10.1081/SPM-200054951
  9. Warsinger, D.M., Swaminathan, J., Guillen-Burrieza, E. and Arafat, H.A. (2015), "Scaling and fouling in membrane distillation for desalination applications: A review", Desalination, 356, 294-311. https://doi.org/10.1016/j.desal.2014.06.031
  10. Ding, Z., Liu, L., Liu, Z. and Ma, R. (2010), "Fouling resistance in concentrating TCM extract by direct contact membrane distillation", J. Membr. Sci., 362(1), 317-325. https://doi.org/10.1016/j.memsci.2010.06.040
  11. Ding, Z., Liu, L., Liu, Z. and Ma, R. (2011), "The use of intermittent gas bubbling to control membrane fouling in concentrating TCM extract by membrane distillation", J. Membr. Sci., 372, 172-181. https://doi.org/10.1016/j.memsci.2011.01.063
  12. Gryta, M. (2008), "Fouling in direct contact membrane distillation process", J. Membr. Sci., 325, 383-394. https://doi.org/10.1016/j.memsci.2008.08.001
  13. Gryta, M. (2010), "Application of membrane distillation process for tap water purification", Membr. Water Treat., 1(1), 1-12. https://doi.org/10.12989/mwt.2010.1.1.001
  14. Gryta, M. (2012), "Polyphosphate used for membrane scaling inhibition during water desalination by membrane distillation", Desalination, 285, 170-176. https://doi.org/10.1016/j.desal.2011.09.051
  15. Gunko, S., Verbych, S., Bryk, M. and Hilal, N. (2006), "Concentration of apple juice using direct contact membrane distillation", Desalination, 190(1), 117-124. https://doi.org/10.1016/j.desal.2005.09.001
  16. He, F., Sirkar, K.K. and Gilron, J. (2009), "Effect of antiscalants to mitigate membrane scaling by direct contact membrane distillation", J. Membr. Sci., 345, 53-58. https://doi.org/10.1016/j.memsci.2009.08.021
  17. Hoek, E.M.V., Allred, J., Knoell, T. and Jeong, B.H. (2008), "Modeling the effects of fouling on full-scale reverse osmosis processes", J. Membr. Sci., 314(1-2), 33-49. https://doi.org/10.1016/j.memsci.2008.01.025
  18. Jackson, M., Watson, P.H., Halliday, W.C. and Mantsch, H.H., (1995), "Beware of connective tissue proteins: assignment and implications of collagen absorptions in in- frared spectra of human tissues", Biochimica et Biophysica Acta, 1270, 1-6 https://doi.org/10.1016/0925-4439(94)00056-V
  19. Kim, A.S. (2013), "A two-interface transport model with pore-size distribution for predicting the performance of direct contact membrane distillation (DCMD)", J. Membr. Sci., 428, 410-424. https://doi.org/10.1016/j.memsci.2012.10.054
  20. Kim, S., Lee, D.W. and Cho, J. (2016), "Application of direct contact membrane distillation process to treat anaerobic digestate", J. Membr. Sci., 511, 20-28. https://doi.org/10.1016/j.memsci.2016.03.038
  21. Lagana, F., Barbien, G. and Drioli, E. (2000), "Direct contact membrane distillation: modelling and concentration experiments", J. Membr. Sci., 166, 1-11. https://doi.org/10.1016/S0376-7388(99)00234-3
  22. Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci., 124, 1-25. https://doi.org/10.1016/S0376-7388(96)00236-0
  23. Lee, J.G., Kim, Y.D., Kim, W.S., Francis, L., Amy, G. and Ghaffour, N. (2015), "Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane", J. Membr. Sci., 478, 85-95. https://doi.org/10.1016/j.memsci.2014.12.053
  24. Lim, A.L. and Bai, R. (2003), "Membrane fouling and cleaning in microfiltration of activated sludge wastewater", J. Membr. Sci., 216, 279-290. https://doi.org/10.1016/S0376-7388(03)00083-8
  25. Lin, S., Yip, N.Y. and Elimelech, M. (2014), "Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling", J. Membr. Sci., 453, 498-515. https://doi.org/10.1016/j.memsci.2013.11.016
  26. Nejati, S., Boo, C., Osuji, C.O. and Elimelech, M. (2015), "Engineering flat sheet microporous PVDF films for membrane distillation", J. Membr. Sci., 492, 355-363. https://doi.org/10.1016/j.memsci.2015.05.033
  27. Pangarkar, B.L., Sane, M.G., Parjane, S.B. and Guddad, M. (2014), "Status of membrane distillation for water and wastewater treatment-A review", Desalin. Water Treat., 52(28-30), 5199-5218. https://doi.org/10.1080/19443994.2013.808422
  28. Rahimpour, A., Madaeni, S.S., Zereshki, S. and Mansourpanah, Y. (2009), "Preparation and characterization of modified nano-porous PVDF membrane with high anti-fouling property using UV photo-grafting", Appl. Surf. Sci., 255, 7455-7461. https://doi.org/10.1016/j.apsusc.2009.04.021
  29. Sakai, K., Muroi, T., Ozawa, K., Takesawa, S., Tamura, M. and Nakane, T. (1986), "Extraction of solutefree water from blood by membrane distillation", ASAIO J., 32(1), 397-400. https://doi.org/10.1097/00002480-198609000-00001
  30. Shirazi, M.M.A., Kargari, A. and Shirazi, M.J.A. (2012), "Direct contact membrane distillation for seawater desalination", Desalin. Water Treat., 49(1-3), 368-375. https://doi.org/10.1080/19443994.2012.719466
  31. Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. (2015), "Fouling and its control in membrane distillation-A review", J. Membr. Sci., 475, 215-244. https://doi.org/10.1016/j.memsci.2014.09.042
  32. Wang, J., Qu, D. Tie, M., Ren, H., Peng, X. and Luan, Z. (2008), "Effect of coagulation pretreatment on membrane distillation process for desalination of recirculation cooling water", Separ. Purif. Tech., 64, 108-115. https://doi.org/10.1016/j.seppur.2008.07.022
  33. Wang, P. and Chung, T.S. (2015), "Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring", J. Membr. Sci., 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016
  34. Warsinger, D.M., Swaminathan, J., Guillen-Burrieza, E. and Arafat, H.A. (2015), "Scaling and fouling in membrane distillation for desalination application: A review", Desalination, 356, 294-313 https://doi.org/10.1016/j.desal.2014.06.031
  35. Woo, Y.C., Lee, J.J., Tijing, L.D., Shon, H.K., Yao, M. and Kim, HS. (2015), "Characteristics of membrane fouling by consecutive chemical cleaning in pressurized ultrafiltration as pre-treatment of seawater desalination", Desalination, 369, 51-61. https://doi.org/10.1016/j.desal.2015.04.030
  36. Wu, Y., Kong, Y., Liu, J., Zhang, J. and Xu, J. (1991), "An experimental study on membrane distillationcrystallization for treating waste water in taurine production", Desalination, 80(2), 235-242. https://doi.org/10.1016/0011-9164(91)85160-V
  37. Yun, Y., Ma, R., Zhang, W., Fane, A.G. and Li, J. (2006), "Direct contact membrane distillation mechanism for high concentration NaCl solutions", Desalination, 188, 251-262. https://doi.org/10.1016/j.desal.2005.04.123
  38. Zarebska, A., Nieto, D.R., Christensen, K.V. and Norddahl, B. (2014), "Ammonia recovery from agricultural wastes by membrane distillation: Fouling characterization and mechanism", Water Res., 56, 1-10. https://doi.org/10.1016/j.watres.2014.02.037
  39. Zoungrana, A., Zengin, I.H., Elcik, H., Yesilirmak, D., Karadag, D. and Cakmakci, M. (2016), "Arsenic removal from drinking water by direct contact membrane distillation", Membr. Water Treat., 7(3), 241-255. https://doi.org/10.12989/mwt.2016.7.3.241

Cited by

  1. Autopsy study of irreversible foulants on polyvinylidene fluoride hollow-fiber membranes in an immersed microfiltration system operated for five years vol.199, 2018, https://doi.org/10.1016/j.seppur.2018.01.039
  2. Electrochemical nitrate reduction using a cell divided by ion-exchange membrane vol.9, pp.3, 2017, https://doi.org/10.12989/mwt.2018.9.3.189